
MAY 2018 | VOL. 61 | NO. 5 | COMMUNICATIONS OF THE ACM 37

V viewpoints
I

M
A

G
E

 B
Y

 A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
/S

H
U

T
T

E
R

S
T

O
C

K

DOI:10.1145/3199601 Fred B. Schneider

Privacy and Security
Putting Trust in
Security Engineering
Proposing a stronger foundation for an engineering
discipline to support the design of secure systems.

interfaces, we are making an implicit
assumption: that attackers have access
to only certain avenues for controlling
the system or for learning information
about its state. We also are making an
implicit assumption when we ignore
delays associated with memory access,
since attackers might be able to make
inferences by measuring those delays.

Assumptions are potential vulner-
abilities. If a component will behave
as expected only if some assumption
holds, then an attacker can succeed
simply by falsifying that assumption.

WHEN WE MUST depend
on a system, not only
should we want it to
resist attacks but we
should have reason

to believe that it will resist attacks. So
security is a blend of two ingredients:
mechanism and assurance. In develop-
ing a secure system, it is tempting to
focus first on mechanism—the famil-
iar “build then test” paradigm from
software development. This column
discusses some benefits of resisting
that temptation. Instead, I advocate
that designers focus first on aspects
of assurance, because they can then
explore—in a principled way—connec-
tions between a system design and its
resistance to attack. Formalizing such
connections as mathematical laws
could enable an engineering discipline
for secure systems.

Trust and Assumptions
To computer security practitioners, the
term “trust” has a specific technical
meaning, different from its use in ev-
eryday language. To trust a component
C is to assert a belief that C will behave
as expected, despite attacks or failures.
When I say that “we should trust C”
then either I am asking you to ignore
the possibility that C is compromised
or I am asserting the availability of evi-
dence that convinced me certain (often
left implicit) aspects of C’s behavior
cannot be subverted. Availability of evi-
dence is required in the second case,
because what convinces me might not

convince you, so psychological ques-
tions that underpin trust claims now
can be explored separately in discus-
sions about the evidence.

Trust is often contingent on assump-
tions. These assumptions must be
sound, or our trust will be misplaced.
We often make explicit our assump-
tions about the environment, talking
about anticipated failures or the capa-
bilities of attackers. But we also make
implicit assumptions. For example,
when expectations about behavior are
couched in terms of operations and

http://dx.doi.org/10.1145/3199601

38 COMMUNICATIONS OF THE ACM | MAY 2018 | VOL. 61 | NO. 5

viewpoints

be smaller than an operating system,
VMM should be easier to understand
than OS and, therefore, easier to trust.
Any isolation, however, is relative to a
set of interfaces. The designers of VMM
and OS both will have made assump-
tions about what interfaces to include.
And, for example, if the interface to a
memory cache was not included in the
set of isolated interfaces then attacks
like Spectre become feasible.

Bases for Trust
The approach advocated in this col-
umn depends critically on having
methods to justify trust in compo-
nents and in systems built from those
components. There seem to be three
classes of methods: axiomatic, ana-
lytic, and synthesized. They are often
used in combination.

Axiomatic Basis for Trust. This
form of trust comes from beliefs that
we accept on faith. We might trust
some hardware or software, for ex-
ample, because it is built or sold by
a given company. We are putting our
faith in the company’s reputation.
Notice, this basis for our trust has
nothing to do with the artifact we are
trusting. The tenuous connection to
the actual component makes axiom-
atic bases a weak form of evidence
for justifying trust. Moreover, an axi-
omatic basis for trust can be difficult
for one person to convey to another,
since the underlying evidence is, by
definition, subjective.

Analytic Basis for Trust. Here we use
testing and/or reasoning to justify con-
clusions about what a component or
system will and/or will not do. Trust in
an artifact is justified by trust in some
method of analysis. The suitability of
an analysis method likely will depend
on what is being analyzed and on the
property to be established.

The feasibility of creating an ana-
lytic basis for trust depends on the
amount of work involved in perform-
ing the analysis and on the sound-
ness of any assumptions underlying
that analysis.

 ! Testing. In theory, we might check
every input to every interface and con-
clude that some properties about be-
haviors are always satisfied. But enu-
meration and checking of all possible
inputs is likely to be infeasible, even
for simple components. So only a sub-

Most attacks can be deconstructed
using this lens. For example, buffer-
overflow attacks exploit an assump-
tion about the lengths of values that
will be stored in a buffer. An attack
stores a value that is too long into the
buffer, which overwrites values in ad-
jacent memory locations, too. The
recent Spectre1 attack illustrates just
how subtle things can get. With access
to an interface for measuring execu-
tion times, an attacker can determine
what memory locations are stored in a
cache. Speculative execution causes a
processor to access memory locations,
transferring and leaving information
in the cache. So, an attacker can learn
the value of a secret by causing specu-
lative execution of an instruction that
accesses different memory depending
on that secret’s value. The implicit as-
sumption: programs could not learn
anything about speculative executions
that are attempted but reversed.

One aspect of a security engineer-
ing discipline, then, would be to iden-
tify assumptions on which our trust
depends and to assess whether these
assumptions can be falsified by attack-
ers. Whether such assumptions can
be falsified will depend, in part, on an
attacker’s capabilities. The Defense
Science Board3 groups attackers into
three broad classes, according to at-
tacker capabilities:

 ! Those who only can execute ex-
isting attacks against known vulner-
abilities;

 ! Those who can analyze a system to
find new vulnerabilities and then de-
velop exploits; and

 ! Those who can create new vulner-
abilities (e.g., by compromising the
supply chain).

Or we might characterize attackers
in terms of what kind of access they
have to a system:

 ! Physical access to the hardware;
 ! Access to the software or data; or
 ! Access to the people who use or

run the system.
Cryptographers characterize attack-

ers by bounding available computa-
tion; they see execution of PPT (proba-
bilistic polynomial-time) algorithms as
defining the limit of feasible attacks.

To build a system we are prepared to
trust, we eliminate assumptions that
constitute vulnerabilities we believe
could be exploited by attackers.

 ! Analysis of a system or its compo-
nents could allow weaker assumptions
to replace stronger assumptions, be-
cause we then know more about pos-
sible and/or impossible behaviors. To
embrace the results of such an analy-
sis, however, we must be prepared to
trust the analyzer.

 ! Incorporating security mecha-
nisms in a system or its components
provides a means by which an assump-
tion about possible and/or impossible
behaviors can be made, because the
security mechanism prevents certain
behaviors. So we can weaken assump-
tions about system behaviors if we are
prepared to trust a security mechanism.

In both cases, we replace trust in
some assumption by asserting our
trust in something else. So assump-
tions and trust have become the driv-
ing force in the design of a system.

An example will illustrate this role
for assumptions and trust. To justify
an assumption that service S executes
in a benign environment, we might
execute S in its own process. Process
isolation ensures the required benign
environment, but we now must trust
an operating system OS to enforce iso-
lation. To help discharge that assump-
tion, we might run only the one process
for S in OS but also execute OS in its
own (isolated) virtual machine. A hy-
pervisor VMM that implements virtual
machines would then allow us to as-
sume OS is isolated, thereby requiring
a reduced level of trust in OS, because
OS now executes in a more benign
environment. Since a hypervisor can

To build a system
we are prepared
to trust, we eliminate
assumptions
that constitute
vulnerabilities
that could be
exploited by
attackers.

MAY 2018 | VOL. 61 | NO. 5 | COMMUNICATIONS OF THE ACM 39

viewpoints

so an attack that succeeds at one
replica is not guaranteed to succeed
at another. Other randomly selected
per-replica semantics-preserving
transformation would work, too.

Program rewriters are another
means for creating synthesized bas-
es. The rewriter takes a software com-
ponent C as its input, adds checks or
performs analysis, and outputs a ver-
sion C′ that is robust against some
class of attacks, because C′ is inca-
pable of certain behaviors. If we trust
the rewriter, then we have a basis for
enhanced trust in C′. But even if we
do not trust the rewriter, we could
still have a basis for enhanced trust in
that rewriter’s output by employing a
variant of proof-carrying code.2 With
proof-carrying code, the rewriter also
outputs a proof that C′ is a correctly
modified version of C; certifiers for
such proofs can be simple and small
programs, independent of how large
and complicated the rewriter is.

Conclusion
An engineering discipline should pro-
vide means to analyze and construct
artifacts that will satisfy properties
of interest. This column proposed a
foundation for an engineering disci-
pline to support the design of secure
systems. It suggests that system de-
sign be driven by desires to change the
assumptions that underlie trust. Se-
curity mechanisms change where we
must place our trust; analysis allows
us to weaken assumptions.

References
1. Kocher, et al. Spectre attacks: Exploiting speculative

execution; https://spectreattack.com/spectre.pdf
2. Necula, G.C. Proof-carrying code. In Proceedings of the

24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming (Paris, France), 1997, 106–119.

3. Resilient Military Systems and the Advanced Cyber
Threat. Defense Science Board Task Force Report
(Oct. 2013).

Fred B. Schneider (fbs@cs.cornell.edu) is Samuel B.
Eckert Professor of Computer Science and chair of the at
Cornell University computer science department, Cornell
University, USA.

Supported in part by AFOSR grant F9550-16-0250
and NSF grant 1642120. The views and conclusions
contained herein are those of the author and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of these
organizations or the U.S. government.

Schneider is grateful to Susanne Hambrusch, John King,
Carl Landwehr, Steve Lipner, and Greg Morrisett for their
very helpful feedback on early drafts of this column.

Copyright held by author.

set of the inputs to certain interfaces
would be checked. An assumption is
thus being introduced—that the right
set of inputs is being checked.

 ! Formal Verification. Software is
amenable to logical analysis, either
manual or automated. Today’s state of
the art for automated analysis allows
certain simple properties to be checked
automatically for large components
and allows rich classes of properties to
be verified by hand for small compo-
nents. Research in formal verification
has made steady progress on widen-
ing the class of properties that can be
checked automatically, as well as on
increasing the size and complexity that
can be handled.

An analytic basis for trust can be con-
veyed to some consumer by sharing
the method and the results the method
produced. When testing is employed,
the artifact, set of test cases, and ex-
pected outputs are shared. For under-
taking other forms of automated analy-
sis, we would employ an analyzer that
not only outputs a conclusion (“pro-
gram type checked”) but also generates
and provides a transcript of the infer-
ences that led to this conclusion—in
effect, the analyzer produces a proof
of the conclusion for the given arti-
fact. Proof checking is, by definition,
a linear-time process in the size of the
proof, and proof checkers are far sim-
pler programs than proof generators
(that is, analyzers). So, without dupli-
cating work, a consumer can check the
soundness of a manually or automati-
cally produced proof.

Synthesized Basis for Trust. Trust
in the whole here derives from the way
its components are combined—a form
of divide and conquer, perhaps involv-
ing trust in certain of the components
or in the glue used to combine them.
Most of the mechanisms studied in a
computer security class are intended
for supporting a synthesized basis of
trust. OS kernels and hypervisors en-
force isolation, reference monitors and
firewalls restrict the set of requests a
component will receive, ignorance of a
secret can impose unreasonable costs
on an outsider attempting to perform
certain actions.

With synthesized bases for trust,
we place trust in some security mech-
anisms. These mechanisms ensure

some component executes in a more-
benign setting, so the component can
be designed to operate in an environ-
ment characterized by stronger as-
sumptions than we are prepared to
make about the environment in which
the synthesis (mechanism plus compo-
nent) is deployed.

Assumptions about independence
are sometimes involved in estab-
lishing a synthesized basis for trust.
With defense in depth, we aspire for a
combination of defenses to be more
secure than any of its elements. Two-
factor authentication for withdraw-
ing cash at an ATM is an example; a
bankcard (something you have) and a
PIN (something you know) both must
be presented, so stealing a wallet con-
taining the card alone does not ben-
efit the attacker.a Defense in depth
improves security to the extent that its
elements do not share vulnerabilities.
So an independence assumption is in-
volved—we make an assumption that
success in attacking one element does
not increase the chances of success in
attacking another.

Independence does not hold in
replicated systems if each replica
runs on the same hardware and exe-
cutes the same software; the replicas
all will have the same vulnerabilities
and thus be subject to the same at-
tacks. However, we can create some
measure of independence across
replicas by using address space lay-
out randomization, which causes
different replicas of the software to
employ different memory layouts,

a Kidnapping the person usually gets the wallet,
too. So the two mechanisms here have a vul-
nerability in common.

An engineering
discipline should
provide means
to analyze and
construct artifacts
that will satisfy
properties of interest.

