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Privacy and Security 
Putting Trust in 
Security Engineering 
Proposing a stronger foundation for an engineering  
discipline to support the design of secure systems. 

interfaces, we are making an implicit 
assumption: that attackers have access 
to only certain avenues for controlling 
the system or for learning information 
about its state. We also are making an 
implicit assumption when we ignore 
delays associated with memory access, 
since attackers might be able to make 
inferences by measuring those delays.

Assumptions are potential vulner-
abilities. If a component will behave 
as expected only if some assumption 
holds, then an attacker can succeed 
simply by falsifying that assumption. 

WHEN WE MUST depend 
on a system, not only 
should we want it to 
resist attacks but we 
should have reason 

to believe that it will resist attacks. So 
security is a blend of two ingredients: 
mechanism and assurance. In develop-
ing a secure system, it is tempting to 
focus first on mechanism—the famil-
iar “build then test” paradigm from 
software development. This column 
discusses some benefits of resisting 
that temptation. Instead, I advocate 
that designers focus first on aspects 
of assurance, because they can then 
explore—in a principled way—connec-
tions between a system design and its 
resistance to attack. Formalizing such 
connections as mathematical laws 
could enable an engineering discipline 
for secure systems.

Trust and Assumptions
To computer security practitioners, the 
term “trust” has a specific technical 
meaning, different from its use in ev-
eryday language. To trust a component 
C is to assert a belief that C will behave 
as expected, despite attacks or failures. 
When I say that “we should trust C” 
then either I am asking you to ignore 
the possibility that C is compromised 
or I am asserting the availability of evi-
dence that convinced me certain (often 
left implicit) aspects of C’s behavior 
cannot be subverted. Availability of evi-
dence is required in the second case, 
because what convinces me might not 

convince you, so psychological ques-
tions that underpin trust claims now 
can be explored separately in discus-
sions about the evidence.

Trust is often contingent on assump-
tions. These assumptions must be 
sound, or our trust will be misplaced. 
We often make explicit our assump-
tions about the environment, talking 
about anticipated failures or the capa-
bilities of attackers. But we also make 
implicit assumptions. For example, 
when expectations about behavior are 
couched in terms of operations and 
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be smaller than an operating system, 
VMM should be easier to understand 
than OS and, therefore, easier to trust. 
Any isolation, however, is relative to a 
set of interfaces. The designers of VMM 
and OS both will have made assump-
tions about what interfaces to include. 
And, for example, if the interface to a 
memory cache was not included in the 
set of isolated interfaces then attacks 
like Spectre become feasible. 

Bases for Trust
The approach advocated in this col-
umn depends critically on having 
methods to justify trust in compo-
nents and in systems built from those 
components. There seem to be three 
classes of methods: axiomatic, ana-
lytic, and synthesized. They are often 
used in combination.

Axiomatic Basis for Trust. This 
form of trust comes from beliefs that 
we accept on faith. We might trust 
some hardware or software, for ex-
ample, because it is built or sold by 
a given company. We are putting our 
faith in the company’s reputation. 
Notice, this basis for our trust has 
nothing to do with the artifact we are 
trusting. The tenuous connection to 
the actual component makes axiom-
atic bases a weak form of evidence 
for justifying trust. Moreover, an axi-
omatic basis for trust can be difficult 
for one person to convey to another, 
since the underlying evidence is, by 
definition, subjective.

Analytic Basis for Trust. Here we use 
testing and/or reasoning to justify con-
clusions about what a component or 
system will and/or will not do. Trust in 
an artifact is justified by trust in some 
method of analysis. The suitability of 
an analysis method likely will depend 
on what is being analyzed and on the 
property to be established.

The feasibility of creating an ana-
lytic basis for trust depends on the 
amount of work involved in perform-
ing the analysis and on the sound-
ness of any assumptions underlying 
that analysis. 

 ! Testing. In theory, we might check 
every input to every interface and con-
clude that some properties about be-
haviors are always satisfied. But enu-
meration and checking of all possible 
inputs is likely to be infeasible, even 
for simple components. So only a sub-

Most attacks can be deconstructed 
using this lens. For example, buffer-
overflow attacks exploit an assump-
tion about the lengths of values that 
will be stored in a buffer. An attack 
stores a value that is too long into the 
buffer, which overwrites values in ad-
jacent memory locations, too. The 
recent Spectre1 attack illustrates just 
how subtle things can get. With access 
to an interface for measuring execu-
tion times, an attacker can determine 
what memory locations are stored in a 
cache. Speculative execution causes a 
processor to access memory locations, 
transferring and leaving information 
in the cache. So, an attacker can learn 
the value of a secret by causing specu-
lative execution of an instruction that 
accesses different memory depending 
on that secret’s value. The implicit as-
sumption: programs could not learn 
anything about speculative executions 
that are attempted but reversed. 

One aspect of a security engineer-
ing discipline, then, would be to iden-
tify assumptions on which our trust 
depends and to assess whether these 
assumptions can be falsified by attack-
ers. Whether such assumptions can 
be falsified will depend, in part, on an 
attacker’s capabilities. The Defense 
Science Board3 groups attackers into 
three broad classes, according to at-
tacker capabilities: 

 ! Those who only can execute ex-
isting attacks against known vulner-
abilities; 

 ! Those who can analyze a system to 
find new vulnerabilities and then de-
velop exploits; and

 ! Those who can create new vulner-
abilities (e.g., by compromising the 
supply chain). 

Or we might characterize attackers 
in terms of what kind of access they 
have to a system: 

 ! Physical access to the hardware;
 ! Access to the software or data; or
 ! Access to the people who use or 

run the system.
Cryptographers characterize attack-

ers by bounding available computa-
tion; they see execution of PPT (proba-
bilistic polynomial-time) algorithms as 
defining the limit of feasible attacks.

To build a system we are prepared to 
trust, we eliminate assumptions that 
constitute vulnerabilities we believe 
could be exploited by attackers. 

 ! Analysis of a system or its compo-
nents could allow weaker assumptions 
to replace stronger assumptions, be-
cause we then know more about pos-
sible and/or impossible behaviors. To 
embrace the results of such an analy-
sis, however, we must be prepared to 
trust the analyzer.

 ! Incorporating security mecha-
nisms in a system or its components 
provides a means by which an assump-
tion about possible and/or impossible 
behaviors can be made, because the 
security mechanism prevents certain 
behaviors. So we can weaken assump-
tions about system behaviors if we are 
prepared to trust a security mechanism. 

In both cases, we replace trust in 
some assumption by asserting our 
trust in something else. So assump-
tions and trust have become the driv-
ing force in the design of a system.

An example will illustrate this role 
for assumptions and trust. To justify 
an assumption that service S executes 
in a benign environment, we might 
execute S in its own process. Process 
isolation ensures the required benign 
environment, but we now must trust 
an operating system OS to enforce iso-
lation. To help discharge that assump-
tion, we might run only the one process 
for S in OS but also execute OS in its 
own (isolated) virtual machine. A hy-
pervisor VMM that implements virtual 
machines would then allow us to as-
sume OS is isolated, thereby requiring 
a reduced level of trust in OS, because 
OS now executes in a more benign 
environment. Since a hypervisor can 

To build a system  
we are prepared  
to trust, we eliminate 
assumptions 
that constitute 
vulnerabilities  
that could be 
exploited by 
attackers.



MAY 2018  |   VOL.  61  |   NO.  5  |   COMMUNICATIONS OF THE ACM     39

viewpoints

so an attack that succeeds at one 
replica is not guaranteed to succeed 
at another. Other randomly selected 
per-replica semantics-preserving 
transformation would work, too.

Program rewriters are another 
means for creating synthesized bas-
es. The rewriter takes a software com-
ponent C as its input, adds checks or 
performs analysis, and outputs a ver-
sion C′ that is robust against some 
class of attacks, because C′ is inca-
pable of certain behaviors. If we trust 
the rewriter, then we have a basis for 
enhanced trust in C′. But even if we 
do not trust the rewriter, we could 
still have a basis for enhanced trust in 
that rewriter’s output by employing a 
variant of proof-carrying code.2 With 
proof-carrying code, the rewriter also 
outputs a proof that C′ is a correctly 
modified version of C; certifiers for 
such proofs can be simple and small 
programs, independent of how large 
and complicated the rewriter is.

Conclusion
An engineering discipline should pro-
vide means to analyze and construct 
artifacts that will satisfy properties 
of interest. This column proposed a 
foundation for an engineering disci-
pline to support the design of secure 
systems. It suggests that system de-
sign be driven by desires to change the 
assumptions that underlie trust. Se-
curity mechanisms change where we 
must place our trust; analysis allows 
us to weaken assumptions.  
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set of the inputs to certain interfaces 
would be checked. An assumption is 
thus being introduced—that the right 
set of inputs is being checked. 

 ! Formal Verification. Software is 
amenable to logical analysis, either 
manual or automated. Today’s state of 
the art for automated analysis allows 
certain simple properties to be checked 
automatically for large components 
and allows rich classes of properties to 
be verified by hand for small compo-
nents. Research in formal verification 
has made steady progress on widen-
ing the class of properties that can be 
checked automatically, as well as on 
increasing the size and complexity that 
can be handled.

An analytic basis for trust can be con-
veyed to some consumer by sharing 
the method and the results the method 
produced. When testing is employed, 
the artifact, set of test cases, and ex-
pected outputs are shared. For under-
taking other forms of automated analy-
sis, we would employ an analyzer that 
not only outputs a conclusion (“pro-
gram type checked”) but also generates 
and provides a transcript of the infer-
ences that led to this conclusion—in 
effect, the analyzer produces a proof 
of the conclusion for the given arti-
fact. Proof checking is, by definition, 
a linear-time process in  the size of the 
proof, and proof checkers are far sim-
pler programs than proof generators 
(that is, analyzers). So, without dupli-
cating work, a consumer can check the 
soundness of a manually or automati-
cally produced proof.

Synthesized Basis for Trust. Trust 
in the whole here derives from the way 
its components are combined—a form 
of divide and conquer, perhaps involv-
ing trust in certain of the components 
or in the glue used to combine them. 
Most of the mechanisms studied in a 
computer security class are intended 
for supporting a synthesized basis of 
trust. OS kernels and hypervisors en-
force isolation, reference monitors and 
firewalls restrict the set of requests a 
component will receive, ignorance of a 
secret can impose unreasonable costs 
on an outsider attempting to perform 
certain actions.

With synthesized bases for trust, 
we place trust in some security mech-
anisms. These mechanisms ensure 

some component executes in a more-
benign setting, so the component can 
be designed to operate in an environ-
ment characterized by stronger as-
sumptions than we are prepared to 
make about the environment in which 
the synthesis (mechanism plus compo-
nent) is deployed.

Assumptions about independence 
are sometimes involved in estab-
lishing a synthesized basis for trust. 
With defense in depth, we aspire for a 
combination of defenses to be more 
secure than any of its elements. Two-
factor authentication for withdraw-
ing cash at an ATM is an example; a 
bankcard (something you have) and a 
PIN (something you know) both must 
be presented, so stealing a wallet con-
taining the card alone does not ben-
efit the attacker.a Defense in depth 
improves security to the extent that its 
elements do not share vulnerabilities. 
So an independence assumption is in-
volved—we make an assumption that 
success in attacking one element does 
not increase the chances of success in 
attacking another. 

Independence does not hold in 
replicated systems if each replica 
runs on the same hardware and exe-
cutes the same software; the replicas 
all will have the same vulnerabilities 
and thus be subject to the same at-
tacks. However, we can create some 
measure of independence across 
replicas by using address space lay-
out randomization, which causes 
different replicas of the software to 
employ different memory layouts, 

a Kidnapping the person usually gets the wallet, 
too. So the two mechanisms here have a vul-
nerability in common.

An engineering 
discipline should 
provide means  
to analyze and 
construct artifacts 
that will satisfy  
properties of interest.


