Chapter 9

Credentials-based
Authorization

A set can be defined intensionally by specifying properties required of all its
members or it can be defined extensionally by enumerating its elements. For
example, the set of people authorized to enter a nightclub might be characterized
intensionally by giving a minimum required age or characterized extensionally
by providing a guest list. The DAC and MAC authorization policies we have
been studying enumerate principals (with privileges), so they are extensionally-
defined policies. As a result, these authorization policies do not provide a useful
explanation about why a given request is or is not authorized.

An intensionally-defined authorization policy would supply such an explana-
tion because, by definition, authorization is decided by checking whether certain
properties are satisfied. The properties that needed to be satisfied but aren’t
constitute the explanation for why a given request is not authorized.

Properties on which we might base an authorization decision include

e beliefs about principals,
e beliefs about other aspects of the system state, and
e the basis for trusting each of these beliefs.

Cornell University, for example, might stipulate that a request to read from the
university’s telephone directory be granted only if made during normal working
hours by an individual who Cornell certifies as being among its students, staff,
or faculty. This is an intensionally-defined policy. It is formulated in terms of a
belief about the system state (“during normal working hours”), a belief about
the principal making the request (“being among the students, ...”), and a basis
for trusting the latter belief (“... who Cornell certifies”).

Credentials-based authorization' uses credentials and guards to enforce inten-

IThis is also called claims-based authorization and proof-carrying authorization in the
literature.
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204 Chapter 9. Credentials-based Authorization

sionally-defined authorization policies. Credentials convey beliefs about princi-
pals and/or the system state; guards employ logical inference to grant requests
only when some specified goal formula is shown to hold. The goal formula is a
logical formula involving (i) predicates characterizing beliefs that principals hold
and (ii) predicates characterizing which sources of credentials the guard trusts
to convey accurate beliefs about one or another aspect of reality. A guard’s
decision to grant a request is thus based on properties (described in a goal for-
mula and conveyed by credentials), which is the defining characteristic of an
intensionally-defined authorization policy.

Note that guards in credentials-based authorization do not themselves check
whether beliefs conveyed in credentials are accurate statements about reality.
What a guard checks is:

e Whether a goal formula is satisfied by beliefs being conveyed in some
assembled credentials.

e Whether the sources of those credentials are trusted by this guard.

The source of each credential is the accountable party for ensuring the accuracy
of beliefs conveyed by that credential.

Credentials-based authorization allows for delegation of authority because it
enables different principals to be trusted on different matters. For example, a
professional society is the authority on its membership, and a university is the
authority on who are its students; with credentials-based authorization, both
institutions would participate in enforcing an authorization policy for granting
reduced conference registration fees to student members of the society. Dele-
gation of authority is an attractive way to handle authorization in networked
systems, where different hosts are managed by different organizations and thus
each host can provide only some of the information needed to make an autho-
rization decision. The alternative to delegation of authority is for guards to be
responsible for storing and managing information. That approach is inferior be-
cause it replicates information already being stored and managed elsewhere in
a system and because the guard now incorporates additional mechanism, which
must be trusted.

9.1 A Logic for Authorization

The foundation of any realization of credentials-based authorization is a logic
for specifying and reasoning about beliefs and goal formulas. This logic must
be able to distinguish between identical beliefs held by different principals; it
also must be able to distinguish between beliefs a principal holds and what is
actually ¢rue. One principal might, for example, hold a belief that B is true
while another disagrees or is ignorant about this matter; and a principal might
even hold a belief that B is true when, in fact, B is false. First-order predicate
logics, familiar to most computer scientists, do not provide convenient constructs
for making such distinctions.
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9.1. A Logic for Authorization 205

Modal logics offer a syntax for associating beliefs with principals, and these
logics also provide inference rules that take into account the principal that is
holding each belief involved in instantiating an inference rule. In this chapter,
we describe a simple modal logic called CAL (Credentials Authorization Logic),
which is formulated expressly to serve as the foundation for credentials-based
authorization schemes.

CAL extends a constructive first-order predicate logic CFoL by adding a
says operator for attribution of beliefs and speaksfor operators for delegation.

e P says C attributes a belief—specified here by CAL formula C—to a
principal P. This construct is useful in formalizing access requests and
meanings of credentials.

e P’ speaksfor P asserts that a principal P adopts all beliefs attributed to
principal P’. P’ says C then implies P says C. Unrestricted delegation
from P to P’ is specified in this manner, as is complete trust in P’ by P.

e P’ speaks x:C for P specifies restricted delegation. It asserts that cer-
tain beliefs—denoted here using notation “z:C” (defined on page 215)—
attributed to a principal P’ are adopted by principal P.

These new operators enable an authorization policy to be specified as a CAL
formula. For instance, CAL formula

Alice says PhoneNum(nme)
A TimeServer says 0800 < now < 1700
A Cornell says Alice € (CUstudents U CUstudents U CUstaff)

could serve as a goal formula for authorizing a PhoneNum (nme) request by Alice
for the phone number of nme. It authorizes requests made during business hours
(0800 to 1700) by a members of the Cornell community.

Given a goal formula specified in CAL, the task of a guard can then be
characterized in terms of CAL inferences. For formulas Fi, ..., F,, and F of any
logic L, logicians write sequent

Fio Foy oy FnbL F (9.1)

to assert that conclusion F can be derived from assumptions Fi, Fa, ..., Fpn by
using the axioms and inference rules of logic L. We refer to such a derivation
as support for the sequent. For logics that are sound, having support for a
sequent implies that the sequent’s conclusion is satisfied whenever the sequent’s
assumptions are satisfied. Notice that when the list of assumptions in (9.1) is
empty then it becomes i, F, the conventional notation for asserting that F
is a theorem of logic L. That meaning agrees with the familiar definition for
a theorem—a formula derived by starting with axioms and applying a finite
sequence of inference rules.

The operation of a guard thus can be characterized in terms of CAL and
sequents, as follows.
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206 Chapter 9. Credentials-based Authorization

Guard Operation. In response to each request R, a guard will:

1. Goal Formula Determination. Identify CAL formula Gr that should
serve as the goal formula for request R.

2. Credential Collection. Assemble a collection of credentials Cy, Co, ...,
Cp, for use in establishing that Gr holds.

3. Guard Sequent Formulation. Formulate a guard sequent
M<c1)7 M<C2>7 L) M(Cn) I_CAL gR (92)

where M(C) is the CAL formula denoting the belief(s) that credential
C conveys.

4. Authorization Decision. Authorize request R to proceed if CAL sup-
port for (9.2) is available; deny R if that support is absent. O

This description admits many possible guard implementations. Credentials as-
sembled in step 2 might accompany request R, be provided by a third party,
and/or be fetched by the guard either in anticipation of R or only after R has
been received. Similarly, the support for guard sequent (9.2) required by step 4
might accompany the request, be provided by a third party, or be generated by
the guard.

Notice that the credentials in step 2, guard sequent in step 3, and CAL sup-
port in step 4 together constitute a rationale that can be understood by humans,
can be recorded for later review, and identifies sources to hold accountable for
each credential involved in the authorization decision.

9.2 A Constructive First-Order Predicate Logic

Formulas and Derivation Trees. The syntax for formulas F of the con-
structive first-order predicate logic CFoL that CAL extends is given by the
BNF grammar

Fu=true | false | p(11, T2, -y Tn)
| FAF | FVF | F=F (9.3)
| (Vv: F) | (Fv:F)
where 71, 7o, ..., T, are terms (i.e., expressions that map states to values) and p
names a predicate (i.e., a total function that maps states to Booleans). In this

logic, a predicate that takes zero arguments is called a propositional variable,
and negation is considered an abbreviation:

-F: (F = false).
Figure 9.1 gives the inference rules of CFoL. Notation

Pi, Pay s Pa
' F

R
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false
TRUE: true FALSE:
F, G FAG FAG
AND-I: AND-LEFT-E: AND-RIGHT-E:
FAG F g
F g F=H,G=H,FVG
OR-LEFT-1. —/———— OR-RIGHT-I. —/————— OR-E:
FVG FVG H
A F
F,F=g g
IMP-E:———————— IMP-T(A\): —————
g F=gG
' F provided x not free in any uncanceled
FORALLE (Va: F) assumptions in the derivation of F
ORALLE: (Vz: F)  provided free variables in 7 remain free
’ ' Flz := 1] occurrences when 7 is substituted for x in F
o F [z =] provided free variables in 7 remain free
EXISTS-I: ——————
C 3z F) occurrences when 7 is substituted for x in F

F =G, (3z: F) provided z is not free in G or in any
EXISTS-E: uncanceled assumptions in the
g derivation of F = G

Figure 9.1: Inference Rules for CFoL

is used there to specify an inference rule that has name R and that derives
conclusion F from premises P1, Po, ..., Pp.

A derivation tree is a diagram that depicts how instances of inference rules
are combined to derive a specific conclusion from some set of assumptions.
Figure 9.2 gives an example. The conclusion (i.e., “p A ¢ = g A p”) appears
at the bottom of the diagram and the assumptions appear at the top. A
signifies an assumption that is deemed canceled because (i) it is an axiom or
previously proved theorem, or (ii) the assumption has some label A and the
path in the derivation tree from that assumption to the conclusion includes
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AND-RIGHT-E: —————————,  AND-LEFT-E:
q p
AND-I: A
IMP-1(A): Y :Z p /Zz »

Figure 9.2: Derivation Tree for pAg= g Ap

an application of inference rule IMP-1(A). All other assumptions are deemed
uncanceled and typeset without boxes. So the derivation tree in Figure 9.2 has
two canceled assumptions.? Both canceled assumptions are the same (formula
“p A ¢” with label A) and each assumption was deemed canceled because the
path from it to the conclusion passes through an application of inference rule
IMP-1(A).

We formally define a derivation tree T, its set Asmpts(T) of assumptions
and its conclusion Conc(T), inductively.

Derivation Tree Formal Definition.
— A formula F or a labeled formula \:F standing alone constitutes a
derivation tree T with Asmpts(T) = {F} and Conc(T) = F.

— If Dy, Ds, ..., D, are derivation trees then
D1, Do, ..., D,
R:
f

is a derivation tree 7 with

Asmpts(T) = Ur<i<n Asmpts(D;)
Cone(T)=F

provided each D; discharges corresponding premise P; of inference

Pi, P2, ..., Pn
rule g T D

]:

Whether a derivation tree D; discharges a premise P; of some inference rule
depends on the premise. Two kinds of premises are found in the inference rules
of Figure 9.1. (Calligraphic identifiers F, G, and H here denote formulas of the
logic.)

e If premise P; is simply a formula then derivation tree D; discharges P; if

Conc(D;) = P;.

2Don’t be misled by Figure 9.2. Not all assumptions in a derivation tree will necessarily
be deemed canceled, and not all canceled assumptions will have the same label (e.g., A).
Derivation tree (9.5) on page 209, for example, has no canceled assumptions. And each of the
assumptions in derivation tree (9.25) on page 226 has a different label.
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X F

e Ifpremise P;is : then derivation tree D; discharges P; if F € Asmpts(D;)
g
and Conc(D;) =G.

For example, in the derivation tree of Figure 9.2, assumption A: p A q discharges
AipA
premise F A G of AND-RIGHT-E; derivation tree AND-RIGHT-E:ﬂ (which has
q
q as conclusion) discharges premise F of AND-1 where F is instantiated by g;

and derivation tree

Al pAg Al pAg

AND-RIGHT-E: 5 AND-LEFT-E:

axp 1 L (9.5)
gD

(which has A: p A ¢ among its assumptions and has g A p as its conclusion) dis-
A F

charges IMP-1(\) premise : for F instantiated by A: p A ¢ and G instantiated

g
by q A p.

Derivation Trees and Sequents. Derivation trees relate uncanceled as-
sumptions to conclusions in a way that constitutes support for a sequent. We
next characterize that relationship. It holds for CFoL of Figure 9.1 as well as for
any extension satisfying certain modest requirements, which (by design) CAL
satisfies.

Soundness for Derivation Trees. Let L be any logic that has a set of
sound inference rules comprising

— IMP-I(\) and
— other inference rules whose premises each are given as individual

formulas (rather than by more complicated derivation trees).

If a derivation tree 7T is constructed using inference rules of logic L then
the conclusion of 7 will be satisfied provided all uncanceled assumptions
of T are satisfied.? O

3The result follows by contradiction. Suppose that conclusion F of some derivation tree
T is false but that all uncanceled assumptions Fi, Fa, ..., Fn of T are true. If we derive a
contradiction from this then we prove that F must be true or some F; is false, which implies
what Soundness for Derivation Trees is asserting.

To derive the contradiction we seek, if suffices to observe that if conclusion F of a derivation
tree is false then the inference rule whose conclusion was F must have been instantiated with
a premise that is false. (This is because, by definition, if all of the premises of any instance of a
sound inference rule hold then so will the conclusion. So if the conclusion does not hold then at
least one premise must not hold.) By repeatedly invoking the same reasoning backward from
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210 Chapter 9. Credentials-based Authorization

Soundness for Derivation Trees justifies the use of derivation trees as support
for sequents. Recall that sequent Fi, Fa, ..., F, Fr, F when logic L is sound

asserts that conclusion F holds if assumptions Fy, F, ..., Fn, hold. Uncanceled
assumptions in a derivation tree thus have the same meaning as assumptions in
a sequent.

Derivation Tree Support for a Sequent. A derivation tree with con-
clusion F and uncanceled assumptions Fi, Fa, ..., F,, constitutes support
for sequent Fi, Fa, ..., Fn F F. O

For example, the derivation tree in Figure 9.2 has no uncanceled assumptions, so
it constitutes support for a sequent - pA g = ¢ Ap; derivation tree (9.5) has two
uncanceled assumptions (both are “p A ¢”), so that derivation tree constitutes
support for sequent p A g g A p.

The connection between derivation trees and sequents also enables us to use
sequents as specifications for derivation trees. Sequent Fi, Fa2, ..., F, & F
specifies a derivation tree with conclusion F and uncanceled assumptions Fi,
Fo, ..., Fn; sequent FF specifies a derivation tree that has conclusion F and no
uncanceled assumptions. We allow such specifications to appear in isolation or
within a derivation tree. So p A gt g A p is a specification for derivation tree
(9.5); and in writing

AXpAqglq, XpAqkop
gAp

AND-I:

we are using sequent \:p A g - ¢ to specify a derivation tree having uncanceled
assumption A:p A ¢ and conclusion ¢, and we are using sequent A\:;p A ¢ - p to
specify an analogous derivation tree but with p as its conclusion.

Inference Rule Details. The inference rules in Figure 9.1 use notation
Flz := 7] to specify textual substitution. This operation distinguishes between
bound occurrences and free occurrences of variables. A bound occurrence of x
in a formula F is an occurrence that appears in the scope of a quantifier (i.e.,
V or 3) where x is named as the bound variable; all other occurrences of x in F
are considered free. For instance, in

(Vz: xzxy=0) A =23

that premise, we eventually produce a path I from conclusion F of the derivation tree upward
to some assumption \:F; of the derivation tree, where F; and all other formulas on that path
are false. Moreover, \:F; must be a canceled assumption, since we initially supposed that all
uncanceled assumptions are true. F; cannot be a theorem, since F; is false and theorems are
never false. So (from the definition of canceled) we conclude that F; has a label A\; and an
instance of IMP-1()\;) appears on path II. According to Figure 9.1, the conclusion of IMP-1()\;)
must be “F; = ...”. But if F; is false then “F; = ...”. would be true, which contradicts the
earlier stipulation that all formulas on path II are false. So we derived a contradiction from
our supposition that derivation tree conclusion F is false but all uncanceled leaf formulas are
true.
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which is satisfied in those states where y = 0 and x = 23 are true, the first
occurrence of x is bound because it appears in the scope of a Vz quantifier, the
occurrence of y is free, and the second occurrence of z is free.

Textual Substitution. F[z := 7] is the result of substituting term 7 for
all free occurrences of variable x in formula F. O

For example, we have:

(x>ylr=z4+w = (z+w>y) (9.6)
Ve: z>y)lzi=z4+w] = Vz: z>vy) (9.7)
Ve: z>y)ly=2+w] = (Vz: z>z+w) (9.8)
Ve: z>y)ly=z2z+z] = (Vz: x>z+1) (9.9)

In (9.6), the z in = > y is a free occurrence so z+w is substituted for z, whereas

n (Vz: =z > y) the occurrence of z is not free but the occurrence of y is and,
therefore, nothing is replaced in (9.7) but z +w does replace y in (9.8). Finally,
(9.9) is noteworthy because a free occurrence of = in what is being substituted
(z+4x) is captured by the quantifier and becomes a bound occurrence in resulting
formula (Vax: x> z+ x).

The side condition (written in English in Figure 9.1) for FORALL-E and
EXISTS-1 prevents capture caused by the textual substitutions in those rules.
This is needed for soundness, as can be seen by choosing a premise (Vz: F) for
FORALL-E, where

F: x2=0 = (My: y*xx=0).

This premise is valid—it asserts that if z = 0 holds then so does z+xy = 0, where
y ranges over all possible values. Choosing y 4+ 1 for 7 in conclusion Flx

7] of FORALL-E violates the side condition of that inference rule because the
occurrence of y in y+1 is captured when substituted for the z in (Vy: yxxz = 0).
If we ignore the side condition, then FORALL-E derives conclusion Flz := y+1]:

y+1=0 = (My: yx(y+1)=0). (9.10)

So by ignoring the side condition, we could use FORALL-E to infer (9.10), which
is not valid because y? +y = 0 it does not hold for all values y. The y in
antecedent y + 1 = 0 of (9.10) refers to the value the state assigns to y but the
y in consequent (Vy: y* (y+ 1) = 0) of (9.10) ranges over all possible values.
The conclusion of a sound inference rule must always be valid.

Capture causes a formula in which distinct occurrences of the same variable
all take the same value to be transformed into a formula where those occurrences
may take different values. Assigning a single value to all free occurrences of some
variable in a valid formula results in a valid formula; assigning different values
to the different occurrences might not result in a valid formula.

The side conditions for FORALL-1 and EXISTS-E prevent free occurrences of
variables in uncanceled assumptions from being transformed into bound occur-
rences and vice versa. For example, by ignoring the side condition accompanying
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FORALL-I, we would obtain derivation tree
FORALL-I: ———————————, 9.11
. ( )

We derived a conclusion stipulating that all values equal 0, which is invalid
even if uncanceled assumption x = 0 of derivation tree (9.11) holds. The free
occurrence of x in the uncanceled assumption became a bound occurrence in
the conclusion.

The side condition for EXISTS-E prevents a bound occurrence of x in premise
(3z: F) from becoming a free occurrence in conclusion G. Here is a derivation
tree that violates this side condition. In it, F is instantiated by = 0 and G
is instantiated by = 0V z = 1; (z = 0)[z := 0] is deemed to be a canceled
assumption because = is reflexive, so “0 = 0” is a theorem.

OR-LEFT- ——
r=0Vz=1 (z=0)[z:=0]
IMP-1(\): ,  EXISTS-I:
r=0=(z=0Vz=1) (Fz: x=0)
EXISTS-E:
r=0Vze=1

There are no uncanceled assumptions in this derivation tree so, according to
Soundness for Derivation Trees, the conclusion should be satisfied in all states.
Clearly, x = 0Vz = 1 does not hold in all states—an unsound inference is being
made in the derivation tree.

9.3 Extension to Credentials Authorization Logic

Syntax. CAL extends constructive first-order predicate logic CFoL (§9.2) by
adding syntax for attribution of beliefs, unrestricted delegation, and restricted
delegation. The BNF for CAL formulas C, which uses identifiers P and P’ to
denote principals, adds the following productions to the BNF given in (9.3) for
CFoL formulas F.

C:=F | PsaysC | P’ speaksfor P | P’speaks z:C for P (9.12)
| CAC | CVC | C=C
Negation remains an abbreviation:
-C: (C = false).
Notice that CAL formulas can nest attribution and delegation operators, so

Bob says (Carol says (Ted speaksfor Alice))

is a CAL formula. BNF (9.12) allows quantification to appear only in formu-
las of CFoL, though. So (Vz: Bob says p(z)) is not a CAL formula, whereas
Bob says (Vz: p(x)) is. And quantification over principals is not allowed any-
where in CAL formulas.
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9.3. Extension to Credentials Authorization Logic 213

Interpretations. The meaning of any logical formula is usually defined rela-
tive to some class of interpretations by giving a satisfaction relation =. If « E F
holds for an interpretation ¢ and a formula F, then ¢ is called a model* for F.
Accordingly, ¢ is defined to be a model for a sequent Fy, Fo, ..., F, = F if ¢ is
a model for conclusion F whenever ¢ is a model for each assumption Fi, Fo, ...,
Fn. That is, ¢ |= Fi, t = Fa, ..., Lt = F, implies ¢ |= F.

A formula F is wvalid (denoted = F) if and only if every interpretation is
a model for F; a sequent Fi, Fa, ..., Fn, B F is valid if and only if every
interpretation ¢ is a model for that sequent. This definition of a valid sequent is
consistent with the connection between sequents and derivation trees discussed
in Derivation Tree Support for a Sequent (page 210) in light of Soundness of
Derivation Trees (page 209)

Interpretations for a constructive logic are intended to capture the knowledge
that might be available to some reasoning agent, such as a guard. Additional
information leads to increased levels of knowledge. An accessibility relation
> can be used to characterize increased levels of knowledge: +/ > ¢ holds if
interpretation ¢’ contains all knowledge represented by interpretation ¢ (and ¢/
may contain additional knowledge, t0o).

The satisfaction relation |= for a constructive logic is required to be mono-
tonic with respect to increased levels of knowledge:

Satisfaction Monotonicity. If ¢« = F and ¢/ > ¢ then ¢/ | F. O

That is, adding knowledge to an interpretation ¢ that is a model for some formula
F, always produces an interpretation ¢’ that is also a model for F. Satisfaction
Monotonicity makes constructive logics well suited for use by guards. A guard
typically has incomplete information about the system state. Suppose, based on
that information, the guard establishes that some goal formula F is satisfied,
and thus an access should be allowed to proceed. Satisfaction Monotonicity
implies that having additional information about that system state does not
lead to a different decision—F is satisfied in the resulting interpretation, too.

Formulas of ordinary first-order predicate logics typically have states as in-
terpretations. Each state o associates a value with each variable. Interpretation
o is a model for a formula F if true is the result of evaluating the expression
obtained when free occurrences of variables in F are replaced by values o assigns
to those variables. For instance, if o associates value 23 with x then we would
have o =z > 0 and say that ¢ is a model for « > 0.

A richer class of interpretations must be employed for a constructive first-
order predicate logic. Here, a partial state associates values with some variables
but need not associate a value with every variable, and ¢’ = o holds if ev-
ery variable assigned a value by partial state o is assigned the same value by
partial state o’ (but ¢’ may assign values to additional variables, too). Satis-
faction Monotonicity then restricts satisfaction relation =cpor, for CFoL so that
o EcroL F implies o’ [Ecror, F for o’ = o if some partial state o is a model for

4For this reason “s = F” is often read as “ models F”
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F and additional information takes the reasoning agent to some partial state
o' > o then ¢’ also will be a model for F.

States and partial states do not include information about beliefs held by
principals. CAL is concerned with reasoning about such beliefs, so states and
partial states alone cannot serve as interpretations for CAL formulas. A CAL
interpretation ¢ instead is a pair (o,, w,(-)), where

e 0, is a partial state, and
e worldview w,(+) is a mapping from principals to sets of CAL formulas.

Each CAL formula in w,(P) conveys a belief that principal P holds. For exam-
ple, we would have

o, EcroL =0 “x>0" €w,(Pr) “ <0” € w,(P2) (9.13)

for a CAL interpretation ¢ in which partial state o, assigns value 0 to x, principal
P holds belief x > 0, and principal P, holds belief < 0. So ¢ describes a
situation in which P; is misinformed about the state and P, has incomplete
information.

CAL is a constructive logic, which requires that an accessibility relation =
be defined on CAL interpretations. We extend accessibility relation >~ on partial
states to CAL interpretations by equating expanded sets of beliefs with higher
levels of knowledge. So, for CAL interpretations ¢ and ¢/, we define ./ = ¢ to
hold if and only if

o, =0, AN wy(P)2Dw,(P) for all principals P. (9.14)

Satisfaction relation ¢ =car, C for a CAL interpretation ¢ and a CAL formula C
can now be given.

Formal Definition of CAL Satisfaction Relation F=car. The formal
definition of

tF=can C

proceeds by cases, according to the the syntax of C. For each case, we also
show that Satisfaction Monotonicity is obeyed, so that we can conclude
(by structural induction) that Satisfaction Monotonicity is obeyed for all
CAL formulas.

F a formula of Constructive First-Order Predicate Logic CFoL
is satisfied in all those interpretations ¢« = (o,,w,(:)) where state o,
is a model for F:

tEcaL F it o, Ecror F

Satisfaction Monotonicity follows because =cror, obeys Satisfaction
Monotonicity.
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P says C is satisfied in all those interpretations ¢ = (o,,w,(+)) where prin-
cipal P holds belief C:

tEcaL PsaysC iff Cew,/(P)

Satisfaction Monotonicity follows because definition (9.14) implies
that w,(P) 2 w,(P) holds whenever ¢/ = + does. Therefore, C €
w,(P) implies C € w, (P), and we conclude that ¢/ F=car P says C
holds when ¢/ Ecar, P says C does.

P speaksfor P’ is satisfied in an interpretation ¢+ = {o,,w,(+)) provided
that for ¢ or any interpretation ¢ = {o,/,w,/(-)) corresponding to a
higher level of knowledge, all beliefs that P holds are beliefs that P’
holds too:

t =car P speaksfor P iff  w,(P) Cw,(P') for all // =

Satisfaction Monotonicity follows directly from the quantification
over /. Had we omitted that quantification and instead simply re-
quired w,(P) C w,(P’) then Satisfaction Monotonicity would not
be guaranteed. An example is ¢/ > ¢ where w,(P) C w,(P’) but
wy(P) € wy(P'), because w,(P’') = w,(P’) and w,(P) C w,(P)
hold.

P speaks x:C for P’ is satisfied in an interpretation ¢ = (o,,w,()) pro-
vided that in ¢ or any interpretation ¢/ = {(o,/,w,/(-)) corresponding
to a higher level of knowledge, all beliefs of the form C[z := 7] that
P holds (for any term 7) are also beliefs that P’ holds. Formally:

t Ecar P speaks x:C for P’ iff w,/(P)|pc Cw,(P) forall /=1

where w, (P)|..c is defined to be the largest subset of w,(P) in which
all beliefs have form C[z := 7] for any term 7. The argument that
Satisfaction Monotonicity is obeyed here is analogous to the one given
above for P speaksfor P’.

Conjunctions and Disjunctions are satisfied in an interpretation ¢ =
(0,,w,(+)) according to the usual meanings given to propositional
connectives A and V:

L ':CAL cnAC iff L ':CAL C and ¢ ':CAL c
L'ZCALC\/C/ iff L':CALC or L':CAL c

Satisfaction Monotonicity follows by structural induction. We sketch
the argument for a conjunction C A C’. (Disjunction is similar.) As-
sume ¢ ':CAL CNnC s0, by definition ¢ ':CAL C and ¢ ':CAL C'. Sat-
isfaction Monotonicity for ¢ F=car, € and for ¢ =car, € then implies
! Ecar C and V' =car C' for ¢/ = «, which (by definition) implies
{ EcarL CAC. And V' EcaL CAC for = o is what Satisfaction
Monotonicity requires.
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Implication C = C’ is satisfied in an interpretation ¢ = (o,,w,(+)) ac-
cording to the usual meaning of propositional connective = in all
interpretations ¢/ = ¢:

tEcaL C=C" iff ' EcaL C implies ¢/ [Ecar C' for all // =

As with speaksfor, Satisfaction Monotonicity requires the quantifi-
cation over /. The quantification ensures ¢ ~car, C = C’ for the case
where ¢ is a model for neither C or C’ (so ¢ =car C implies ¢ =car C)
but CAL interpretation ¢/ = ¢ is a model for C but not a model for
C' (so V' =car C implies ¢/ =car €' does not hold). O

Worldview Anatomy. Worldview w(P), which contains the set® of beliefs
held by a principal P, constitutes the basis for credentials P issues. We formalize
this connection between beliefs in w(P) and credentials issued by P as:

Credentials Foundation. A principal P issues a credential conveying
P says C—thereby attesting to a belief C that P holds—only if C € w(P)
is true. O

When P is operating correctly, beliefs in w(P) derive from (i) credentials P
receives, (ii) other inputs, (iii) system state P reads, and (iv) the internal logic
of programs P executes (because programs embody beliefs through what they
compute). Notice that if P is compromised and issues bogus credentials, then
Credentials Foundation implies that w(P) contains the corresponding bogus
beliefs—even if it means w(P) contains mutually inconsistent beliefs.

Different programs that a principal P might execute will contribute different
beliefs to worldview w(P). Rather than analyzing each specific program for
its contributions to w(P), we instead employ a conservative approximation for
worldviews and, henceforth, restrict consideration to only those interpretations
that contain such a conservative approximation. Specifically, we posit that
worldview w(P) contains (i) a set Init p of beliefs that reflect those aspects of the
initial system state known to P and (ii) all logical consequences. Presumably,
beliefs contributed by programs P executes would be some subset of those logical
consequences, which is what makes our worldviews conservative approximations.

The procedure for constructing a conservative approximation enumerates
the (potentially infinite) set of logical consequences, starting with set Initp of
beliefs.

Conservative Approximation for Worldviews. For a principal P
having a set Initp of beliefs, worldview w(P) is defined by

w(P) = clear(P, Initp)

where deductive closure cloar(P, B) is computed by starting with set B
and repeatedly adding CAL formulas:

5For a system whose current state is described by CAL interpretation ¢ = {(o,,w,(+)), we
would thus have w(P) = w,(P).
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(i) Add all valid formulas of CAL.
(ii) Add formulas C for which

P says Cy, PsaysCsy, ..., PsaysCy FcaL P saysC

if C; € clear(P, B) holds for 1 <4 < N.
(iii) Add all formulas in w(P’) if “P’ speaksfor P” € clcal(P, B).

(iv) Add all formulas C[x := 7] for any term 7 where Cz := 7] € w(P’)
and “P’ speaks z:C for P” € clcar(P, B). O

Clause (i) adds to w(P) all CAL theorems. Clauses (ii) — (iv) incorporate into
w(P) any beliefs that are logical consequences of other beliefs in w(P), including
logical consequences of beliefs previously added by clauses (i) — (iv).

Principals may hold inconsistent beliefs. A principal might receive incon-
sistent credentials, obtain inconsistent values from reading a changing system
state at different instants, or execute programs that are buggy or malicious.
Credentials issued by a principal P holding inconsistent beliefs B and =B (say)
are problematic for making authorization decisions. Here’s why. —B is an ab-
breviation for B = false, so IMP-E (Figure 9.3) with premises B and -8 would
add false to w(P), due to clause (ii) of Conservative Approximation for World-
views. Applications of inference rule FALSE (Figure 9.3) then adds to w(P) any
and all CAL formulas. So when P holds inconsistent beliefs, credentials from P
should not be used to justify authorizing a request. Fortunately, inconsistency
in credentials issued by a principal P often can be detected; guards can then be
notified that credentials with source P should be ignored.

CAL Inference Rules. The inference rules of CAL are sound for interpreta-
tions constructed using our conservative approximations of worldviews. The set
of inference rules comprise those of CFoL (Figure 9.1), their counterparts (Figure
9.3) for reasoning about CAL formulas constructed using propositional connec-
tives (A, V, and =), and inference rules (Figure 9.4) for reasoning about says,
unrestricted delegation speaksfor, and restricted delegation speaks x:C for.
This last set of inference rules merits further discussion.

SAYS-I asserts with its conclusion P says C that worldview w(P) of each
principal P contains every previously proved theorem C; clause (i) of Conser-
vative Approximations for Worldviews allows this. The restriction (conveyed
by writing Fcap, C as the premise) that a SAYS-I premise must be a deriva-
tion tree with no uncanceled assumptions warrants explanation. If the premise
of SAYS-1 could instead be discharged by exhibiting a derivation tree with un-
canceled assumptions then SAYS-1, in conjunction with IMP-1()), could be used
to derive support® for sequent Fcar, C = P says C. That sequent is sound

SHere is a derivation tree for sequent Fcar, C = P says C assuming the premise for SAYS-I
could be discharged using an arbitrary CAL formula C.

PsaysC
C = PsaysC

SAYS-I:

IMP-I(\):
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c,c CAC CAC
AND-I: AND-LEFT-E: AND-RIGHT-E:

CAC! C c’

C c c=c",C=Cc"',cvC
OR-LEFT-I: C \/ C/ OR-RIGHT-I: C \/ CI OR-E: C//
A C
c,C=C c false
IMP-E: ———————— IMP-I(\): ————— FALSE:
c’ C=1<C

Figure 9.3: CAL Inference Rules for Propositional Connectives

only if every principal P holds a belief C whenever C is true—an omniscience
assumption about principals that is unrealistic, because a principal might well
be ignorant about some aspects of the system state or about beliefs other prin-
cipals hold. For instance, were we requiring that Fcay, C = P says C be sound
then P says (z = 0) would have to be true if z = 0 is true, even when variable
x is located on some distant computer that is not communicating with P.

SAYS2-1 and SAYS-E concern introspection. SAYS2-1 asserts that if C € w(P)
is true, so P says C holds, then P is sufficiently introspective to have that
“P says C” € w(P) is true too, so P says (P says C) holds. SAYS-E then
ensures that introspective beliefs have a basis: if “P says C” € w(P) it true
then so is “C” € w(P). sAYS-E would be superfluous if SAYS-1 and sAvys?-1 were
the only ways to derive P says (P says C). However, other CAL inference rules
(e.g., SAYS-IMP-E, DELEG-E, and REST-DELEG-E) also can derive conclusions
containing P says (P says C); SAYS-E allows P says C to be deduced no matter
how P says (P says C) has been derived.

A typical use of SAYS-IMP-E is illustrated by the derivation tree for conclusion
P says C' from assumptions P says C and P says (C = (’).

P says (C= (')

P C, sAvS-IMP-E:
says SAYS-IMP-E (P says C) = (P says (')
IMP-E: (915)
P says C’

Notice that a single principal (viz. P) serves as the source in the premises and for
the conclusion of IMP-E, so inconsistency cannot be produced at one principal
by using IMP-E to combine beliefs that other principals hold.

This raises a broader question: Can a combination of CAL rules be used to
derive an inconsistency in the worldview at one principal by combining beliefs
that other principals hold? The answer is no. We define two or more principals
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Fcear C ‘ P says C P says (P says C)
SAYS-I: ——————— SAYSZ-I: SAYS-E:

P says C P says (P says C) P says C

P says (C= (')
(P says C) = (P says (')

SAYS-IMP-E:
(a) Inference Rules for says
P says (P’ speaksfor P) P’ speaksfor P

HAND-OFF: DELEG-E:

P’ speaksfor P (P’ says C) = (P says C)

P speaksfor P’, P’ speaksfor P”
P speaksfor P”

DELEG-TRANS:

(b) Inference Rules for Unrestricted Delegation (speaksfor)

P’ speaksfor P
P’ speaks z:C for P

REST-NARROW:

P says (P’ speaks z:C for P)
P’ speaks x:C for P

REST-HAND-OFF:

P’ speaks z:C for P
(P'saysClz :=7]) = (PsaysClz:=7])

REST-DELEG-E:

P speaks z:C for P’, P’ speaks z:C for P”
P speaks z:C for P”

REST-DELEG-TRANS:

(¢) Inference Rules for Restricted Delegation (speaks x:C for)

Figure 9.4: CAL Inference Rules for says and speaksfor
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to be independent if none either directly or indirectly makes an unrestricted or
restricted delegation to another.

Non-interference in CAL. Let IP = {Py, Ps,...,P,} be any set of
independent principals. For every P € IP

Ci,...,Cp FcoaL P says false

if and only if
Ci,...,C, Feaw P says false

where no assumption C; includes “P; says ...” for P; € IP — {P}. O

Non-interference in CAL implies that inconsistency in the worldview of one
principal cannot be the result of beliefs that other, independent, principals hold.
For example, if P and P’ are independent principals then P says false cannot
contribute to a derivation of P’ says false.

HAND-OFF asserts that a principal P is the one to decide whether to adopt
the set of beliefs held by some other principal P’. Moreover, by holding belief
P’ speaksfor P, a principal P becomes accountable by HAND-OFF for all beliefs
held by principal P’ and, in so doing, delegates its full authority to P’. Sound-
ness of HAND-OFF follows from clause (iii) of Conservative Approximation for
Worldviews, as follows. If premise P says (P’ speaksfor P) is satisfied then
we conclude “P’ speaksfor P’ € w(P) is true, so clause (iii) implies that C is
added to w(P) for all C € w(P’). Thus, by construction, w(P’) C w(P), which
means conclusion P’ speaksfor P of HAND-OFF is satisfied, and HAND-OFF is
sound.

The consequences of unrestricted delegation are materialized with DELEG-E.
Here is a derivation tree to conclude P says C from assumptions P’ says C and
P’ speaksfor P.

P’ speaksfor P

P’ C, brLeG-E:
Sayst, prume (P'says C) = (P says ()
IMP-E: (916)
P says C

To be convinced that DELEG-E is sound, observe that if premise P’ speaksfor P
is satisfied then by definition w(P’) C w(P), so C € w(P’) = C € w(P) holds.
Consequently (P’ says C) = (P says C), the conclusion of DELEG-E, is satisfied.

DELEG-TRANS surfaces inferences from the transitivity of unrestricted del-
egation. If P’ speaksfor P’ holds then not only are all beliefs in w(P’) in-
corporated into w(P"”) but so are all beliefs in w(P) for principals P that P’
delegates to (hence trusts) directly or transitively. To trust a principal P’ thus
not only means adopting the beliefs that P’ holds but also trusting choices P’
makes about which principals it trusts, principals they trust, and so on. The
risk of inconsistency in a worldview increases by incorporating beliefs from sets
of known and unknown principals, so transitivity of delegation can bring un-
pleasant surprises. Transitivity of delegation is useful, however, for allowing
clients to be ignorant about implementation details for services they invoke.
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Only when delegation is transitive can a service be implemented in terms of
other services without also requiring that its clients both know the identities of
the other services and make explicit delegations to those other services.
REST-NARROW, REST-HAND-OFF, REST-DELEG-E, and REST-DELEG-TRANS
provide a means to mitigate some of the risks that unrestricted delegation brings.
By using REST-HAND-OFF, a source becomes accountable for beliefs that have
some pre-specified form C[z := 7] for a variable z and term 7. For example,

CSdept says (Univ speaks x:Enrolled(z) for CSdept) (9.17)

is satisfied when w(CSdept) incorporates the subset of beliefs Univ holds and
have form “Enrolled(z)”, where x has been replaced by some value. We might
have

Univ says Enrolled (MMB)
Univ says —Enrolled (MMB)

which would mean that Univ holds inconsistent beliefs. Under unrestricted
delegation
Cornell speaksfor CSdept (9.18)

CSdept incorporates beliefs Enrolled(MMB) and —FEnrolled(MMB), which makes
w(CSdept) inconsistent. Replace unrestricted delegation (9.18) by the restricted
delegation

Univ speaks x:Enrolled(x) for CSdept (9.19)

and this inconsistency is eliminated from w(CSdept), because (9.19) adds belief
Enrolled(MMB) but not —Enrolled(MMB) into w(CSdept). Of course, (9.19) could
still lead to inconsistency in w(CSdept) if other inferences lead CSdept to hold
belief —Enrolled (MMB).

REST-DELEG-E not only concerns beliefs represented by a single formula C
but, in combination with SAYS-IMP-E, also applies to beliefs implied by C. For
example, P says C’ can be derived if (i) P’ holds a belief C named in a restricted
delegation from P to P’ and (ii) C = C’ is a CAL theorem:

P’ speaks z:C for P Fcear,C = C’
P’ says C, DELEG-E: SAYS-I:
(P'saysC) = (P saysC) ¢y P says (C = (')
IMP-E: IMP-E:
P says C (P says C) = (P says (')
IMP-E:
P says (’

Some helpful derived inference rules of CAL are given in Figure 9.5. They
facilitate proofs that are shorter and/or easier to construct than proofs that
use only the inference rules found in Figure 9.1, Figure 9.3, and Figure 9.4.
Any proof that uses a derived inference rule can, by definition, be mechanically
transformed into a proof that does not use that derived inference rule. For ex-
ample, each instance of SAYS-IMP-MP can be replaced by a version of derivation
tree (9.15).
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(P says C) A (P says C') P says (CAC)
SAYS-AND-I: SAYS-AND-E:
Psays (CAC) (P says C) A (P says C')
(P saysC) V (P says C') P says (CVv ()
SAYS-OR-I: SAYS-OR-E:
Psays (CVv () (P says C) V (P says C')
(P saysC) = (P says (') P says C, P says (C=C')
SAYS-IMP-I: SAYS-IMP-MP:
P says (C = (') P says C’

Figure 9.5: Useful Derived Inference Rules for CAL

9.4 Compound Principals

Any system component P—whether it is implemented by hardware, software,
or some combination—can be considered a CAL principal provided it can be
assigned a worldview w(P) as defined in Conservative Approximation for World-
views (page 216). When P comprises multiple components that are themselves
CAL principals, w(P) incorporates beliefs from the worldviews of those compo-
nents. CAL speaksfor operator enables explicit declarations that the world-
view of some principal includes the worldview of another. In this section, we
discuss how a syntax for principal names can offer an implicit means to convey
relationships between worldviews.

Subprincipals. For any principal P and any qualifier n that is a term ranging
over a set of values (including distinguished value ¢), P.n denotes a subprincipal
of P. Thus, among the subprincipals of P are: P.5, P.id, and P.(hour mod 24).
P.n is defined to be the principal having worldview

w(P.n) = clea(P.n, Initp, U {P speaksfor P.n}). (9.20)

Based on this definition, Conservative Approximation for Worldviews clause (iii)
implies that w(P) C w(P.n) holds, and therefore the following CAL inference
rule is sound.

SUBPRIN:

P speaksfor P.n

The qualifier 1 used for naming subprincipal P.n provides a basis to distinguish
among subprincipals of a given principal.

n=1
P.n speaksfor P.y/

EQUIV-SUBPRIN:
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Because subprincipal P.n is itself a principal, it can have subprincipals; we
assume left-associativity, so P.n.n’ abbreviates (P.n).n.

Notice, SUBPRIN allows any statement by a principal P to be attributed to
any subprincipal of P. That is, from P says C we can derive P.n says C for
any subprincipal P.n of P. Unintended attributions are avoided by adopting a
naming convention. We might, for example, agree to attribute to subprincipal
P.c any belief by P that should not be attributed to any other subprincipal
P.ypof P. P.pis not a subprincipal of P.e, so beliefs attributed to P.e are not
inherited by P.7.

One common use of subprincipals is for defining different instances of a prin-
cipal, where each instance authorizes requests issued during disjoint epochs or
associated with different nonces. A single component FileSys might be realized
using a set FileSys.1, FileSys.2, ..., FileSys.i, ... of subprincipals that are each
responsible for handling disjoint subsets of requests to access data stored in
a single shared file system. By including in the goal formula for subprincipal
FileSys.i the conjunct “i = current” (where current is an integer variable ac-
cessible to all of the subprincipals), only the “current” instance FileSys.current
of FileSys ever authorizes requests.

Subprincipals are also useful when one principal is implemented in terms of
another. A process is implemented by multiplexing a hardware processor; script
execution is implemented by an interpreter; and a communications channels
could be implemented by multiplexing a wire or fiber. In general, one component
L implements another component H if all actions being attributed to H are
actually performed by L. Because actions a principal performs are based on
beliefs in its worldview, a CAL characterization for whether a principal Pp,
implements principal Py would stipulate that Py says C holds only if it can be
derived from Py, says (Py says C).

Such a derivation is possible if worldview w(Pr) contains the appropriate
beliefs.

CAL Requirements to Implement a Principal. For a principal Py,
to implement a principal Py their worldviews must satisfy

(i) C € w(Py) = “Pg saysC” € w(Py)
(ii) “Pr, speaksfor Py” € w(Ppg). O

Requirement (i) implies Py, says (Pp says C) holds whenever Py says C does,
which enables Py, to issue credentials attributing a belief C to Py if Py holds
belief C—even if Py, might not itself hold belief C. Requirement (ii), which is
equivalent to Py says (Pj, speaksfor Py ), suffices to derive Py says C from
Py, says (Py says C), as demonstrated by the following derivation tree.

Py says (P, speaksfor Py)

HAND-OFF:

P, speaksfor Py

P;, says (Py says C), 3-E:
L says (P says C), peusa-e Py, says (Py says C) = Py says (Py says C)

IMP-E:

Py says (Py says C)

SAYS-E:

Py says C
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For example, if we use HW.BOOTMGR to name the principal corresponding
to a boot loader BOOTMGR being executed on a processor HW, then SUBPRIN
allows HW.BOOTMGR says C' to be derived from

HW says (HW.BOOTMGR says C)

using the derivation tree given above. If execution of BOOTMGR loads and
transfers control to an operating system OS, then any subsequent execution
could be identified either with HW.BOOTMGR.OS or with HW.0OS. The differ-
ence is that worldview w(HW.BOOTMGR.OS) incorporates Init yw. gooTMGR,
which comprises beliefs about the boot loader, whereas w(HW.0S) does not. So
worldview w(HW.BOOTMGR.0S) is a more accurate abstraction for what is
executing, supports more credentials, and enables more actions than w(HW.0S)
does.”

In order for principal P to implement a subprincipal P.n, the hard part is
satisfying requirement (i) of CAL Requirements to Implement a Principal. It
entails ensuring that P was endowed with all of the beliefs necessary to simulate
every subprincipal P.n being implemented by P. But no effort is required to
satisfy requirement (ii), because (due to SUBPRIN) P, speaksfor Py directly
follows from using P as Pj, and using subprincipals P.n (with different values
of ) as the instances of Py.

Group Principals. A group principal is defined by enumerating the finite
set of principals that are its constituents. Different types of group principals
combine the worldviews of their constituents in different ways before computing
the deductive closure required by Conservative Approximation for Worldviews
(page 216).

Congunctive Group Principals. Worldview w(P{) for a conjunctive group
principal PJ constructed from constituents G = {Px, ..., P, } is the deductive
closure obtained from the intersection of each constituent’s worldview:

w(PG) = doa(Pg , [w(P)).
PeG
It is tedious, but not difficult, to prove
cloa PG, (w(P) = [w(P), (9.21)
PeG PeG

which implies that “conjunctive group” is the right name—P/, holds a belief if
every constituent does:

P; says C, for every P; € G

A-GROUP-SAYS-I:

Py says C

"It is not uncommon to abbreviate the name of a subprincipal by omitting a prefix that
can be inferred by readers. So we might simply write “OS” when readers can infer that
HW.BOOTMGR.OS is meant or when it doesn’t matter whether HW.BOOTMGR.OS or
HW.OS is meant.
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In addition, from (9.21) and a bit of set theory we can deduce
w(Py) C w(P) for Pe@ (9.22)

which suggests the following CAL inference rule:

GROUP-DELEG: for P € G.
A-GROUP-DELEG Pé Speaksfor P

By combining A-GROUP-DELEG with derivation tree (9.16), we obtain derived

inference rule R
PJ says C
/\fGROUPfSAYSfE:i for Pe G
P says C

asserting each constituent holds any belief that the conjunctive group principal
holds.

Disjunctive Group Principals. Worldview w(Pg) for a disjunctive group
principal Py, constructed from constituents G = {Px, ..., P;,} is the deductive
closure obtained from the union of each constituent’s worldview.

w(Py) = doalPg, | Jw(P)) (9.23)
PeG

The definition of deductive closure clcar(P, B) given in Conservative Approxi-
mation for Worldviews implies that B C clcar(P, B), so we conclude

wP) € |Jw(P) € w(P§) for PeG, (9.24)
P'eG

which suggests the following CAL inference rule.

v-a . : for Pe G
GROUP-DELEG P Speaksfor Pé

By combining V-GROUP-DELEG with derivation tree (9.16), we obtain a de-
rived inference rule:
P says C

v-GroupP-says-.———— for P € G
P} says C

Thus, if a constituent holds some belief then the disjunctive group principal P
will hold that belief.

Definition (9.23) for w(P¢), however, implies that a disjunctive group prin-
cipal can hold beliefs that no constituent holds, because logical consequences
from the combined beliefs of different constituents are included in the deductive
closure. As an example, suppose G = { Py, P2} and C’' ¢ w(P;)Uw(Pz). Further,
suppose

Cew(P) “C=C" ew(Py)
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hold, so that from (9.24) we conclude
C € w(PY) “C=C" ew(Py)
and therefore
P says C Pl says C = C’
hold. An instance of derivation tree (9.15) now serves as support for sequent
P} says C, P} saysC=C' Fcar Pl saysC'.

Clause (ii) of Conservative Approximation for Worldviews thus implies that
C' € w(Py) holds. Yet C’ does not appear in either w(P;) or w(Ps). Disjunctive
group principal P holds a belief (C’) that none of its constituents do—with
a disjunctive group principal, the whole is greater than the sum (union) of its
parts.

9.5 Accountability with Constructive Logics

A proof that some request satisfies a guard’s goal formula ought to identify
which principal to hold accountable for each belief involved in the authorization
decision. Not all logics support such transparency of accountability. CAL does,
and it is worth understanding how.

Derivations in constructive logics necessarily identify all of the evidence
needed to reach a conclusion, in contrast to derivations in classical logics which
may not. As an illustration, classical logics often have an inference rule that,
from no premises, concludes a formula F is either true or false:

EXCL-MID*: —————

FV-F

Conclusion F V —F might hold because F holds or because —F holds—EXCL-

MID* does not require a premise to distinguish which, so accountability for

conclusion F V —F is lost in logics that contain inference rule EXCL-MID*.
Now consider a derivation tree that uses EXCL-MID* to derive G by a form

of case analysis.

(A):»Fig 5 IMP_I()\/):—\_Fg:>g 5 EXCL—MID*:m
OR-E: g (9.25)

This derivation tree does not depend on whether it is F or —F that holds.
Therefore, the derivation tree does not indicate whether F or =F is accountable

IMP-1
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for G. That lack of accountability is unacceptable as a basis for an authorization
decision that might later be audited. So logics that incorporate inference rule
EXCL-MID* do not exhibit transparency of accountability we seek for logics
intended to support credentials-based authorization.

When using CAL for a guard involving a goal formula G that is derived
differently for the case F holds than for the case where —F holds, an access
request would have to be accompanied by one of the two possible derivation
trees

F -F

g g

depending on whether it is F or =F that holds. The uncanceled assumption in
each derivation tree indicates whether F or =F should be held accountable for
G. So the derivation tree exhibits the transparency of accountability needed for
subsequent audit of authorization decisions.

Although the inference rules for any constructive logic necessarily will ex-
hibit transparency of accountability, the choice of inference rules for constructive
logics is actually driven by a somewhat different concern—support for reasoning
about interpretations that have incompletely characterized states (as opposed
to reasoning from incomplete information about interpretations that are com-
pletely characterized states). CAL interpretations, for instance, are constructed
using partial states. A partial state could omit information necessary for know-
ing whether F or —F holds, so F V —F might not be satisfied in a partial state.
Since there can be interpretations where F V —F is not satisfied, that formula
is not valid. EXCL-MID* would thus not be sound, so it is not an inference rule
of CAL or, by analogous reasoning, other constructive logics. More generally,
inference rules for reasoning about incompletely characterized states must make
explicit the evidence they need for a deduction, because they work only from
what has become known to a reasoning agent. Transparency of accountability
follows from that.

9.6 Credential Implementations

A credential that conveys P says C is worthless unless the recipient has some
basis to trust that the credential was not forged or altered and, therefore, C €
w(P) was true when the credential was created.® How we implement such
credential integrity depends on what assumptions hold about the environment
and about principals.

8Recall, however, that beliefs in w(P) are not themselves required to be true, and a
compromised process might well facilitate attacks by holding beliefs that are false.
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9.6.1 Credential Integrity from Digital Signatures

A public key K can be considered a CAL principal if we define worldview
w(K) for it. We choose w(K) to be the smallest set that satisfies Conservative
Approximation for Worldviews with Initx being the set of beliefs C for which
a k-signed bit string

S, (“K says C”) (9.26)

exists, where k is the private key corresponding to public key K. Notice, because
the value of K appears in (9.26), holders of this signed bit string always have
access to the public key needed to check that the bit string has not been forged
or altered.

We have that C € w(K) holds for every instance of (9.26) because of the way
w(K) is defined. So (9.26) satisfies credential integrity when it is interpreted as
a credential conveying

K says C. (9.27)

We now show that an instance of (9.26) also can be interpreted as a credential
that conveys
Pk says C (9.28)

provided Py is the only principal having knowledge of private key k correspond-
ing to public key K.

If Px creates credential (9.26) to convey Pk says C then Credentials Foun-
dation requires that C € w(Pg) hold. We already established that an instance
of bit string (9.26) implies that C € w(K) holds, so we conclude w(K) C w(Pk)
holds. Thus, we have that K speaksfor Pk is sound, which enables (9.28) to
be derived from (9.27) by using CAL inference rule DELEG-E. So (9.26) serves
as a credential for conveying (9.28) if Pk is the only principal with knowledge
of the private key k that corresponds to a public key K.

Use of a digital signature scheme to implement credentials does have some
limitations. Public-private key pairs are time-consuming to generate. Also, dig-
ital signatures are expensive to create and to validate, and they are not short.’
The most significant limitation, however, is that only certain types of principals
are capable of generating k-signed bit strings and of keeping a private key secret.
Thus, only certain types of principals satisfy the assumptions we require for Py .
Special-purpose cryptographic co-processors satisfy these requirements, as can
privileged system software running on ordinary processors if access to memory
is properly controlled. The memory of an ordinary process, however, cannot be
kept secret from the privileged system software that implements processes and
manages their memory. So an ordinary process cannot store a private key and
issue credentials without also trusting that the underlying system software will
not issue credentials that cause Credentials Foundation to be violated.

9If RSA is used to generate digital signatures then 2048-bit or longer private keys are
recommended. The digital signature generated using a 2048-bit private key is approximately
2048 bits long.
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9.6.2 Credential Integrity from Hashes

Cryptographic hash H(b) of a bit string b can be interpreted as a name that
embodies the entire contents of b: A change to even one bit in b yields (with
very high probability) an unpredictably different value for #(b), hence an un-
predictably different name. Names inextricably linked to what they denote can
serve as names for principals that are inextricably linked to sets of beliefs. Be-
low, we use this observation and show how cryptographic hash functions can
implement credential integrity for certain applications.

Assume some well known invertible bit string representation rep(C) for any
CAL formula C, so that rep~*(rep(C)) = C. We also postulate an encoding
b > rep(C) for unambiguously augmenting an arbitrary bit string b with these
representations, and (since the encoding is unambiguous) extend rep~1(-) to
recover C from b > rep(C):

rep~t(b>rep(C)) = C
We interpret a bit string bt>rep(C) as a credential that conveys CAL formula
H(br> rep(C)) says C (9.29)

thereby attributing belief C to a principal named by a cryptographic hash. And
we define worldview w(H(b > rep(C))) to be the smallest set of beliefs that
satisfies Conservative Approximation for Worldviews, where Inity(ymrep(c)) 18
the set of all beliefs specified by CAL formulas C’ satisfying

H(br>rep(C)) = H(br> rep(C)). (9.30)

We might have hesitations about adopting a definition for the worldview
of b 1> rep(C) that, besides containing belief C, includes a seemingly random
set of other beliefs—mamely, those beliefs C’ satisfying (9.30). However, C’
cannot be attributed to principal H (b > rep(C)) unless there were an efficient
way, given b > rep(C), to obtain CAL formula C’ satisfying (9.30). Since H(-)
is a cryptographic hash function, brute-force enumeration to find such a C’
is infeasible, and the Weak Collision Resistance property'® for cryptographic
hash functions rules out the existence of any faster means for obtaining C’ from
b rep(C)

The existence of fast algorithms to compute cryptographic hashes means that
the scheme just outlined is an attractive way to achieve credential integrity.
The benefits, though, are offset by inflexibility regarding what beliefs can be
attributed to the principal having any given name—belief C can be attributed
only to the principal having name H(b > rep(C)). Moreover, change the set!!
of beliefs, and the name of the principal to which they are being attributed is
likely to change. So hash-based credentials are well suited only for applications

10Weak Collision Resistance asserts that, given a bit string b, it is infeasible to compute
another bit string ' where H(b) = H(b’) holds.
1A set comprising beliefs C1, Ca, ..., Cp is equivalent to a single belief C; AC2 A -+ A Chn.
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where (i) arbitrary principal names can be accommodated and (ii) the set of
beliefs being associated with that principal never changes.

One such application arises in connection programs. A program is often
viewed as a principal holding a fixed sets of beliefs for enabling access to some
data that program manages. Suppose bit string pgm is the binary representation
for such a program. We thus can use pgm > rep(C) for attributing belief C to
pgmn. To execute pgm, a user U would first invoke a system-provided action
that declares trust in the principal H(pgm > rep(C)) associated with whatever
executable is represented by bit string pgm > rep(C). Execution by U of this
system-provided action is, by convention, interpreted to convey

U says (H(pgnt> rep(C)) speaksfor U). (9.31)

After U declares its trust in principal H(pgmt>rep(C)), program pgm then can be
invoked by U. Given (9.31), the CAL HAND-OFF inference rule will attribute to
U actions that pgm performs as well as attributing belief C to U. So beliefs held
by U plus belief C can be required in goal formulas used to authorize requests
made by U’s execution of pgm.

The benefit of the approach becomes clear when we consider what happens if
an attacker substitutes a compromised version pgm’ for pgm and somehow fools
user U into invoking executable pgm’ > rep(C) after U has declared trust in
pem > rep(C) through (9.31). Because

H(pgm > rep(C)) # H(pgm' > rep(C))

likely holds, pgm’ > rep(C) attributes C to a different principal than specified by
U in delegation (9.31). So if U is fooled into invoking pgm’ then the actions
pegm’ performs and belief C will not be attributed to U. A goal formula that
requires C to be attributed to U would cause the guard to block requests that
the compromised program issues.

9.6.3 Kernel Support for Credential Integrity

The final approach we explore for credential integrity employs an operating
system kernel. The kernel would thus be part of the trusted computing base,
though it is likely to be already present for other reasons.'?> Our implementation
depends on the following guarantees about processes that the kernel implements.

e Each process P can read or write memory it owns but is denied access to
all other memory.

e The kernel can read or write memory it owns.'3

121n a networked system, however, the scheme we outline would require the kernel on every
host be trusted by all of the other hosts—an assumption that might be plausible for an intranet
operated by a single enterprise but hard to defend for an open internet.

130ften, the kernel is authorized to read and write memory that any process owns, too. The
approach we describe to credential integrity is unaffected by allowing the additional access.
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AddBelief: operation( blf : formula )
WV]caller() | := WV]caller() | U {bif}
end AddBelief

DelBelief: operation( blf : formula )
WV]caller()] := WV][caller()]— {bif}
end DelBelief

CheckCred: function( cred : credential ) returns (boolean)
CheckCred = cred € (|J {p says blf | blf € WV p|})
P

end CheckCred

QueryCred: function( ¢ : query ) returns (set of credential)
QueryCred := q( |J {p says blf | blf € WV [p]})

P
end QueryCred
Figure 9.6: In-Kernel Credentials Database Implementation

e The identity of the process invoking a system call is available to the kernel
code servicing that invocation.

If every principal is implemented by a separate process then the first guarantee
implies that credentials stored in memory the kernel owns cannot be forged or
corrupted by any principal, whereas the second and third guarantees facilitate
having system calls be the sole means by which processes can alter the sets of
credentials being stored by the kernel. We now turn to the details.

For each principal P, a table entry WV [P] is stored in kernel-owned memory.
WV [P] contains CAL formulas for some subset of the beliefs that P holds:

WVIP] C w(P) (9.32)

Initializing WV [P] to @ makes (9.32) hold.

Deletion of an element from WV[P] cannot invalidate (9.32), although we
might want to restrict this operation to the authority on w(P)—likely, principal
P—or to operating system code that manages storage consumed by WV[P].
By deleting elements from WV [P], a principal P can accommodate changes to
its worldview w(P), something that is explored at length in §9.8.

Adding a CAL formula to WV[P] cannot invalidate (9.32) if P is the only
principal permitted to add credentials to WV [P], because Credentials Founda-
tion implies that C € w(P) will hold when P attempts to add a credential that
conveys a belief C.

Figure 9.6 sketches implementations for system calls AddBelief to add a
credential, DelBelief to delete a credential, CheckCred to determine whether a
specific credential is being stored, and QueryCred to retrieve the subset of all
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credentials satisfying some given query g. The code for AddBelief and DelBelief
is written using a caller() primitive, which returns the name of the invoking
process (hence, the name of an associated principal). For simplicity, we assume
that queries g passed to QueryCred are functions that return some subset of
their input (i.e, those credentials satisfying the criteria specified in the query).
Notice, AddBelief and QueryCred can together be used to pass a credential
from one process to another.!4

An in-kernel table like WV also can provide a clean interface for processes to
learn about states of operating system abstractions—for example, the amount
of free space available in the file system or the processor load. System state
is portrayed as beliefs attributed to a special principal, OS; CheckCred and
QueryCred provide processes with access. Beliefs attributed to OS would prob-
ably not actually be stored in WV, though, to avoid the considerable overhead
needed to keep such constantly-changing information current. Rather, beliefs
attributed to OS would be generated, as needed, whenever WV[0S] is accessed.

Kernel Cache for Derivation Trees. A single derivation tree will often
serve as support for multiple requests. For example, when enforcing discre-
tionary access control for a file system, all requests by a given process to read
a specific file require support for the same guard sequent (which establishes
that the requester is among the principals authorized to read the file). A single
derivation tree thus can be reused. Opportunities for reuse of derivation trees
are present with other authorization policies, too.

System performance suffers unnecessarily when reuse of derivation trees is
not supported. Resending a derivation tree consumes bandwidth, storing copies
consumes memory, and rechecking a tree consumes processor cycles. Therefore,
a single shared cache for storing checked derivation trees is attractive. Moreover,
such a cache simplifies guard programming if the cache supports a search opera-
tion that determines whether a derivation tree being stored (i) has a conclusion
that matches some specified goal formula and (ii) has assumptions that all are
present in some trusted credentials database. Derivation trees would now no
longer need to accompany each access request. A guard simply queries the cache
when checking the guard sequent for a given request being authorized; and each
process, before making an access request, ensures that a suitable derivation tree
appears in the cache.

Figure 9.7 sketches an implementation of such a cache; it uses the credentials
database implementation of Figure 9.6.

AddDervTree(dt) checks whether dt is a derivation tree and, if so, stores it
in DervTrees. Boolean function isDerivTree(dt) checks that dt satisfies
Derivation Tree Formal Definition (page 208) by verifying that each node
of derivation tree dt is an instance of the indicated CAL inference rule.

14The implementation of Figure 9.6 does not restrict which processes are authorized to
retrieve a given credential by invoking QueryCred, but code to support such functionality is
easily added to better approximate the semantics of IPC primitives.
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var DervTrees: set of derivation tree initial(()

AddDrvTree: operation( dt : derivation tree )
if isDerivTree(dt) then DervTrees:= DervTrees U {dt}
end AddDerivTree

CheckConcl: operation( f : formula ) returns (boolean)
var dt : derivation tree
if dt € DervTrees such that
Cone(dt) = f
A for all a € Asmpts(dt): CheckCred(a)
then CheckConcl := true
else CheckConcl := false
end CheckConcl

Figure 9.7: In-Kernel Derivation-Tree Database Implementation

CheckConcl(f) returns true whenever there is some derivation tree dt stored in
DervTrees that satisfies

e conclusion Conc(dt) is CAL formula f, and

e cach CAL formula C; in set Asmpts(dt) of uncanceled assumptions
is in the credentials database.

Figure 9.7 offers no operation to delete a derivation tree, because system execu-
tion never falsifies isDerivTree(dt) for any derivation tree dt stored in DervTrees.
Deletion of a credential from the credentials database, however, can render a
derivation tree dt irrelevant if that credential is an uncanceled assumption of dt.
No harm comes from storing derivation trees that become irrelevant, but also
no harm comes from deleting from DervTrees relevant or irrelevant derivation
trees—say, to control storage costs—because a derivation tree can be reloaded
if ever it is needed but no longer present.

9.7 Guard and Credential Pragmatics

Naming. The designer of a guard must decide what sources to trust for in-
formation about current and past states. Presumably, a guard would trust
predicate evaluations that it performs itself or that an operating system kernel
(which the guard must trust anyway) performs on its behalf. Other compo-
nents might have to be trusted, too, because it is unlikely that every principal
would be able to evaluate every predicate, due to constraints imposed by local-
ity and/or confidentiality. Arguably, a large part of designing a secure system
is concerned with aligning what must be trusted with what can be trusted.
Credentials-based authorization helps focus on these design choices by having
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each credential explicitly bind the name of principal to the belief that credential
conveys, thereby surfacing what is being trusted.

CAL is agnostic about predicate and function names, assuming only that all
principals assign the same meaning to each name. One approach is to standard-
ize the name and meaning (including an evaluation scheme) of all predicates
and functions that guards may use. Implicit in such a solution would have to be
some means for finding a compliant implementation for each predicate or func-
tion. Hierarchical naming, for example, could be used to construct names that
encode the identity of the principal that certifies compliant implementations.

Requested Operations as Beliefs. Goal Formula Determination (step (1)
of Guard Operation, page 206) makes it redundant for a goal formula Go au-
thorizing operation © by a principal P to include

P says © (9.33)

as a conjunct. That redundancy, nevertheless, can be helpful. It forestalls a
request from being erroneously authorized because the wrong goal formula was
selected due to bugs in the code that implements Goal Formula Determination
or due to an operator mistakenly installing the goal formula for a different
operation.

In addition, a modest strengthening of (9.33) can allow guards to defend
against replay attacks. Having (9.33) be a conjunct of Gg binds an invocation
of © to a belief that P holds. To eliminate the possibility of replay attacks,

e cach specific invocation of © would be linked to a distinct belief (instead
of all invocations being linked to a single belief), and

e a correspondingly stronger version of (9.33) would be included as a con-
junct of goal formula Gg, thereby causing the guard to check that a distinct
belief is being used each time © is authorized.

In the obvious implementation, each principal P that invokes operation © re-
places its belief © by beliefs ©1, O, ..., where P says ©; authorizes the i*®
invocation of operation © by P. The guard then maintains an integer array
last[P] that records the index labeling the last ©-invocation by P the guard
authorized, and goal formula Gg includes the following strengthening of (9.33):

Psays ©; A i> last[P]

An alternative defense against replay attacks is to include the simpler (9.33)
as a conjunct of guard formula Gg but ensure that P and the guard are the
only components that ever have access to a credential that conveys (9.33).
The communications channel between P and the guard would thus need to be
confidentiality-protected. Attackers now lack a credential for satisfying (9.33),
so the credentials accessible to an attacker attempting a replay attack would be
insufficient to satisfy guard formula Gg.
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Goal Formula Templates. The decision to authorize a request often will
depend on the identity of the principal making the request, properties of ar-
guments being passed to the requested operation, and/or other parameters of
credentials accompanying the request. A goal formula template can succinctly
specify such an authorization policy for a class of requests. The template is a
CAL formula written in terms of one or more template parameters, which we
typeset here as underlined, sans-serif font (i.e., a, b, ...); an actual goal formula
is generated by replacing the template parameters with information found on
the credentials that accompany a request.
For example, goal formula template

P says FreeMenm(strt, end)
A P speaksfor 0S (9.34)
A 0 <strt <end < MAX

introduces template parameters P, strt, and end. Goal formulas generated from
this template enforce an authorization policy that restricts the request source
(viz. P) to being a principal that speaks for principal 08 (presumably, the op-
erating system) and restrict the arguments (viz. strt and end) to the requested
FreeMem operation.

A set of credentials could admit a number of possible instantiations for tem-
plate parameters, each generating a different goal formula. For example,

Editor says FreeMem(1024, 2048)
A Editor speaksfor 0S
A 0<1024 <2048 < MAX

is among the goal formulas that might be generated from goal formula template
(9.34) for a request accompanied by credentials C; and Cy conveying

M(Cy): Editor says FreeMem(1024,2048)
M(C3): 0S says (Editor speaksfor 0S).

A finite number of goal formulas can be generated given a goal formula
template and finite set of credentials that accompany some request. The guard
authorizes a request if any one of the generated goal formulas yields a guard
sequent for which there is CAL support. And to reduce the cost of generating
all of the possible goal formulas (and constructing or checking a CAL derivation
tree for each), a guard might expect requests to be accompanied with proposed
instantiations for template parameters.

Getting Support for Guard Sequents. A universal guard would take as
inputs

e any goal formula G and

e CAL formulas Cy, Co, ..., C,, conveyed by a set of credentials.
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It would construct and output a derivation tree, if one exists, having conclusion
G and having all of its uncanceled assumptions appearing in Cy, Ca, ..., Cp;
otherwise, some distinguished value unsupported would be output.

Having a universal guard would be a boon to implementing credentials-based
authorization. Unfortunately, Godel’s first incompleteness theorem (a classical
result in formal logic) implies that universal guards cannot exist. Godel proved
that no axiomatization of arithmetic can admit the kind of automated deduction
that universal guards would provide. And CAL or any logic for reasoning about
integers or non-trivial data structures must be extending an axiomatization of
arithmetic.

The infeasibility of universal guards, however, does not preclude implemen-
tations of Authorization Decision (step 4, page 206) for guards that require an
access request to include

(i) credentials having some pre-specified form, and/or

(ii) a derivation tree or parts thereof having pre-specified uncanceled assump-
tions and conclusion.

Given (i), a guard could be programmed to generate the required derivation
tree from the client-provided credentials. Clients, however, would have to pro-
vide credentials in exactly the right form or risk having their access requests
be denied. With (ii), the guard would grant an access only after checking
that client-supplied derivation trees satisfy Derivation Tree Formal Definition
(page 208). Such checking is feasible, because derivation trees are finite and
correct applications of CAL inference rules can be verified mechanically.

Note, use of (i) or (ii) implies that changing the goal formula for a deployed
guard could require finding and updating all principals that might submit re-
quests to that guard. Approach (ii) also requires disclosing the goal formula
to clients, yet there could be reasons for a goal formula to be kept secret—for
example, the same kind of request from different principals might need to satisfy
different conditions.

Guard for a File System. To illustrate, we show how a guard for enforcing
discretionary access control in a file system FileSys might employ (i) and (ii).
Such a guard should allow an access request to proceed if that request is from
the owner of a file or it is from any principal that has been delegated access
from a principal that has access. With this in mind, we choose

FileSys says O(f) (9.35)

to be the goal formula template for performing © operations on a file f. The
owner own(F') of file F' then would be issued restricted delegation

FileSys says (own(F) speaks O(F) for FileSys) (9.36)

by FileSys. And any principal P that has been delegated authorization for
O(F) in turn delegates that authorization to another principal @ by issuing the
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Clv C27 LR Cn
D(f, P): -
P speaks O(f) for FileSys
(P says O(f)) = (FileSys says O(f))
FileSys says O(f)

E says @(f), REST-DELEG-E:

IMP-E:

Figure 9.8: Template for DAC Sequent Support

restricted delegation
P says () speaks O(F) for P). (9.37)

For a principal own(F') to perform O(F), the file system guard is sent a
credential that conveys P says O(F) and a credential that conveys restricted
delegation (9.36). These CAL formulas together suffice to authorize the O(F)
request, because they allow goal formula (9.35) to be derived. For a principal
@ that is not the owner of file F' to perform O(F’), it submits a credential that
conveys @) says O(F), a set of credentials that convey Cy, Ca, ..., Cy, as well as
a derivation tree D(F, Q) that is support for sequent:

Ci, Cay ..., C, Fcar @ speaks O(F) for FileSys

In either case, the guard can instantiate the template in Figure 9.8 based on
information accompanying the access request: The name of the file being read
would be substituted for template parameter f, the name of the principal making
the request would be substituted for template parameter P, and a derivation
tree would substitute for the inference rule instantiation with label D(f, P). For
owner P, derivation tree

FileSys says (own(F) speaks O(F') for FileSys)
P speaks O(F) for FileSys

REST-HAND-OFF:

would be substituted for D(f, P); for non-owners, derivation tree D(F, Q) pro-
vided in the request would be substituted for D(f, P).

9.8 Changes to Beliefs

We should expect that beliefs in worldview w(P) would reflect the current state
and environment of a principal P. Changes to w(P) then bring two kinds of
complications.

e Beliefs being attributed to P by another principal P’ might no longer be
held by P. Problems are avoided if (i) P informs P’ before P changes its
beliefs, or (ii) P’ queries P before P’ undertakes any action that presup-
poses P holds a given belief.
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e Receipt by P’ of a credential might convey beliefs no longer current, de-
spite Credentials Foundation (page 216) and credential integrity. Such
stale credentials can be eliminated by imposing restrictions on how cre-
dentials are disseminated and restrictions on what beliefs they convey.

Protocols for the first are straightforward exercises in concurrent programming,
where actions by one process must be synchronized with state changes by an-
other. So the focus in this section is on the second—restrictions to avoid stale
credentials.

Use of Authorities. A credential cannot become stale after it has been
deleted. Thus, a principal P can remove or modify a belief C in w(P) pro-
vided P has deleted all credentials conveying P says C. Without restrictions on
credential propagation and storage, though, undertaking system-wide credential
deletion is likely to be infeasible. Credentials first must be found, yet they might
be stored anywhere in a system’s files or memory—perhaps unrecognizable if
application-specific formats are in use.

A similar effect to finding and deleting stale credentials is achieved by pre-
venting principals from storing or forwarding credentials that might become
stale. We call a source of credentials an authority if it is the sole provider of
information about some set of beliefs. So a response from an authority Pz on
some belief C, by definition, both conveys whether C € w(P¢) is true and cannot
be used to convince other clients of whether C € w(P¢) is true.

The response from some authority P¢ typically will indicate only whether C €
w(P¢) did hold when the response was generated. To infer that C € w(Pe) still
holds after the response was generated requires reasoning and/or restrictions.
An authority Pe might be designed to delay changing a belief C for at least
T seconds after responding to any client request about C, where T is some
publicly known value. In effect, credentials issued by P expire T seconds after
the response they convey was generated. A client that cannot determine exactly
when some given response was generated nevertheless can conservatively budget
for the credential to expire T" seconds after that client’s request was submitted.'®

The protocol executed by a client P seeking to determine whether authority
Pe holds a belief C is a straightforward query-response over some integrity-
protected and authenticated communications channel Chh . (say). The authen-

tication and integrity protection assumptions for channel Ch,’; . imply
Chp, speaksfor Pe. (9.38)

and, therefore, P can derive
Pe says C
from
C’hgc says (Pc says C)

which is what the response message received on channel Chg . would be con-
veying to P.

15This assumes that the clocks at the client and the authority advance at similar rates.
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‘ Mechanism ‘ Assumptions

system calls (i) authority must be part of the operating system
kernel and (ii) operating system must be trusted

system-provided | (i) authority must be a process on the same ma-
IPC channels chine as the client and (ii) operating system must be
trusted.

digitally-signed (i) private key is known only to authority, (ii) public
messages key us known to all clients, and (iii) a client’s query
includes a globally-unique nonce, which the authority
incorporates into its digitally-signed response.

MAC-protected authority and each client share a (symmetric) key.
messages

Figure 9.9: Implementation Options for Authorities

Figure 9.9 lists various mechanisms for implementing the integrity-protected
and authenticated channel from an authority to a client. Note, the first mech-
anism listed (system calls) employs the kernel support for credential integrity
discussed in §9.6.3. Nonces in the digitally-signed messages are needed to pre-
vent principals from storing and forwarding old responses from authorities.

Weakening and Split Credentials. CAL formula CVC’ is weaker than C—
it rules out fewer interpretations and, thus, it rules out fewer worldviews. So
changes to a principal’s beliefs that invalidate C might not invalidate C Vv C'.
That makes weaker formulas good candidates to convey in credentials.

A vparticularly useful construction is to employ one disjunct as a signal for
whether another disjunct holds, creating what we call a split credential.

Split Credential. Receipt of a credential C that conveys
P says (=B V), (9.39)

along with some basis to conclude P says B, suffices for deriving P says C
in CAL. Moreover, split credential C cannot become stale provided P holds
belief -B whenever P does not hold belief C. O

In sum, a principal P that issues a split credential conveying (9.39) is (i) free
to invalidate C provided P also holds belief =B, and (ii) free to invalidate =5
provided P also holds belief C.

The Split Credential construction replaces a credential to convey P says C,
which can become stale, with a weaker credential. Doing this involves introduc-
ing a new credential to convey P says B. Although that new credential might
itself become stale, we have complete freedom in the choice of B; in contrast,
C presumably would be constrained by the authorization policy that is being
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implemented. By choosing for B a belief that is available solely from some au-
thority Pg, no credentials would be created or stored for conveying P says B,
so none becomes stale. Authority Pp and client P might be one and the same
principal. Or Pg might be a different principal that is trusted by P. Examples
of the latter include a time service or the guard whose goal formula requires
P says C.

A common class of Split Credential constructions instantiate B by a belief
that never changes value from false to true. For (9.39) not to be invalidated, P
is obligated to hold belief C for some initial period that terminates after B first
becomes false. Think in terms of belief C in (9.39) as expiring or being revoked
at the instant B transitions from true to false.

Such a B is easy to construct if some variable is available that stores non-
decreasing values, such as sequence numbers or time. Let nonDecr be that
variable. And suppose changes to nonDecr are controlled by an authority Pa
that is trusted by P, as signified through delegation:

P says P4 speaks v: nonDecr <v for P

If, for instance, we choose nonDecr < 10 for B then P is obligated to hold belief
C only until nonDecr is incremented so that nonDecr > 10 is satisfied. Thus,
receipt of a split credential conveying

P says (nonDecr>10 V C)
along with information from authority P4 that implies
P4 says nonDecr <10

allows P says C to be derived in CAL by P.

9.9 Multi-level Security Revisited

Most descriptions of multi-level security (including §8.1 and §8.1.2) ignore the
infrastructure for assigning labels to files and for assigning clearances to users.
Yet that infrastructure plays a central role in determining whether an access
request will be authorized. By reformulating multi-level security in terms of
credentials-based authorization, we can account for the label-assignment infras-
tructure. The reformulation also illustrates how credentials-based authorization
exposes what principals must be trusted.

Label-assignment likely would be performed by more than one classification
authority, each with jurisdiction to assign some labels but not others.

e Specialized and sometimes secret knowledge about subject matter can be
required to assign the appropriate label L(F) to a file F', so postulating
that a single entity labels all files is not sensible.

e The expertise required for assessing trustworthiness of a human user U
in order to assign a clearance L£(U) is different than what is needed for
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labeling files, so people and files likely would be assigned labels by different
classification authorities.

Moreover, for all the usual reasons favoring delegation of authority, we would
want to have classification authorities be distinct from guards and distinct from
principals that create files.

Our formulation of multi-level security in terms of credentials-based autho-
rization presumes that each file F' has owner own(F) and a label L(F'). We also
postulate that any program Pgm executing for a user U is given a label £L(Pgm)
by the operating system OS, where L£(Pgm) = L(U) holds. These labels are
conveyed to guards through credentials; guards mediate read and write requests
accordingly.

Guards use the goal formula template

Pgm says read(f)
A own(f) says L(f) = If
A OS says L(Pgm) = lpgm
A g 2 lpgm

(9.40)

to authorize a request from a program Pgm to read a file that instantiates
template parameter f. Thus, the read request is allowed to proceed only if
requester Pgm has a clearance that dominates the label on the file to be read.'®

Beliefs about labels £L(F') and L£(Pgm) are in the purview of classification
authorities. Those roots of trust are selected by whomever is responsible for
establishing assurance in the labels being used. A classification authority A
serves as a root of trust for labels used by a principal P if P holds a credential
that conveys a restricted delegation for some set Obj, of objects that P trusts
A to label:

P says (A speaks (l,0):(o € Obj, = L(0)=1) for P) (9.41)

This restricted delegation enables beliefs to be attributed to P if they have
source A and have form “o € Obj, = L(0)=1". So (9.41) is asserting that,
according to principal 4, if o € Obj, holds then £(0) has some given label. For
example,

own(F) says (F € Obj, = L(F)=Ip) (9.42)
can be derived from a credential that conveys
A says (F € Obj, = L(F)=Ip)

from an instance (9.41) that substitutes own(F) for P.17

16The goal formula for write is analogous, except the first conjunct would be
Pgm says write(f) and the final conjunct (“no read-up”) is switched to lpg, =< If (“no
write-down”).

17The derivation tree is built using REST-HAND-OFF, REST-DELEG-E, and IMP-E.
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We formalize in CAL a belief for asserting that F' is among set Obj, of
objects that A is trusted by own(F) to label as:

own(F) says F € Obj, (9.43)
SAYS-IMP-MP with (9.42) and (9.43) then allows us to conclude
own(F) says L(F)=Ip.

as required in goal formula (9.40).

A similar derivation with some (perhaps different) classification authority
A’ would be employed to derive a label assigned by OS to Pgm. Specifically,
0S8 would make a restricted delegation to A’:

OS says (A’ speaks (l,p):(p € Progs,, = L(p)=1) for 0S) (9.44)
This then enables
OS says (Pgm € Progs,, = L(Pgm)=lpgm) (9.45)
to be derived from a credential (presumably from A’) that conveys
A’ says (Pgm € Progs,, = L(Pgm)=Ilpgn)
Coupled with a belief that OS holds
OS says Pgm € Progsy,
about its root of trust for user labels, (9.45) derives
OS says L(Pgm)=lpgm
Putting all this together, we obtain the following guard sequent for goal

formula template (9.40). It incorporates classification authorities as the roots
of trust for label assignments.

Pgm says read(F),

own(F) says (A speaks (l,0):(0 € Obj, = L(0)=1) for own(F)),

own(F) says F € Obj,,

A says (F € Obj, = L(F)=Ip),

OS says (A’ speaks (lI,p):(p € Progs,, = L(p)=1) for OS),

0S says Pgm € Progsy,

A’ says (Pgm € Progs,, = L(Pgm)=lpgn),

Fear

(9.40)[f := F)

This guard sequent specifies derivation trees that constitute support for autho-
rizing a read access to a file F' by a program Pgm. In an actual guard imple-
mentation, the credentials to convey “A says...” and “A’ says ...” would not
accompany the request but instead the guard would fetch these from classifica-
tion authorities A and A’ respectively when labels for F' and Pgm are needed
to authorize a specific request.
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Exercises for Chapter 9

9.1 A proposal has been made to replace Conservative Approximation for
Worldviews clause (ii) by

Ci, Cg, ..., CnFearL €
Which, if any, CAL inference rules become unsound if this replacement is made?

9.2 Conservative Approximation for Worldviews clause (iii) on page 217 incor-
porates all beliefs from w(P’) into w(P) when “P’ speaksfor P” € w(P). Dis-
cuss advantages and disadvantages of the following alternative for that clause.

(iii) Add beliefs from w(P’) into w(P) when “P’ speaksfor P” € w(P’).

9.3 Explain why Conservative Approximation for Worldviews on page 216
ensures that “P; speaksfor P,” € w(P) holds if both “P; speaksfor P;” €
w(P) and “P; speaksfor P,” € w(P) hold.

9.4 A proposal has been made to replace Conservative Approximation for
Worldviews clause (iv) by

(iv) Add all formulas C’ where C[z := 7] = C’ for any term 7, C[x := 7] € w(P’)
and “P’ speaks z:C for P” € clcar(P, B).

Does this alter the contents of the worldview for any principal?

9.5 Prove that if “P says C” € w(P) and “P says (C = C')” € w(P) then
“P says C"” € w(P) will hold.

9.6 Exhibit a CAL sequent Cy, Cy ..., Cy Fcar C  for which conclusion
C can be derived from assumptions Cy, ..., Cy only by using REST-NARROW.
(Doing so establishes the necessity of having the rule.)

9.7 If w(P’) C w(P) holds will P’ speaksfor P necessarily be a theorem of
CAL? Explain.

9.8 To prove that a derived inference rule

Ci, Ca, ..., Cy
' C

R

of CAL is a sound, it suffices to exhibit a derivation tree schema
7;(217 927 eeey Q’rm Q)

where meta-variables C,, C,, ..., C,, C denote CAL formulas and the resulting
derivation trees it produces (i) does not contain instances of inference rule R,
(ii) has C as its conclusion, and (iii) has C,, C,, ..., C,, as its only uncanceled as-
sumptions. For example, soundness of SAYS-IMP-MP follows from derivation tree
(9.15). Use this approach to prove that the other inference rules in Figure 9.5
are sound derived inference rules of CAL.
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(a) SAYS-AND-I (d) SAYS-AND-E
(b) SAYS-OR-I (e) SAYS-OR-E

(c) SAYS-IMP-I

9.9 Consider a computer network where some source process Py sends a mes-
sage m to an intermediary P;, which in turn forwards m to successor Ps, and
so on, until the message reaches its destination Py. The belief that Py holds
after receiving the forwarded message might be summarized using CAL as

Py says (Py—_1 says (... (Pysays m))). (9.46)

What additional CAL formulas are plausible uncanceled assumptions to use in
a derivation tree for Py says m from (9.46).

9.10 Is there a goal formula G that authorizes an operation under some set of
credentials but prohibits that same operation if a superset of those credentials
is submitted to the guard? Justify your answer.

9.11 The following has been proposed to replace definition (9.20) on page 222
for worldview w(P.n) of a subprinicipal P.n:

w(P.m) = clea(Pm, Initp, U Initp).

Would SUBPRIN be sound if this new definition were used? Explain why or why
not.

9.12 Prove (9.21)

ClCAL(Pe, ﬂw(P)) = mw(P)

PeG PeG
mentioned in the discussion of conjunctive group principals.
9.13 Let G = {P1,..., Pp,} be a finite set of principals.
(a) Show that P(, speaksfor P/, is valid by proving w(P3) C w(PY%).

(b) Determine whether

A-DELEG-V:
A v
P{, speaksfor P},

is a sound derived inference rule of CAL, and justify your determination.
(Exercise 9.8 discusses proof obligations for demonstrating soundness of a
CAL derived inference rule.)

9.14 Let G = {P} be a singleton set of principals.
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(a) Show that
P{, speaksfor P/, and P/ speaksfor P(,
both are valid by proving w(Pg) = w(Pg).
(b) Determine whether

G={P}
' P), speaksfor P},

G={P)
n P}, speaksfor P},

and Vo=-

are sound derived inference rules of CAL, and justify your determination.
(Exercise 9.8 discusses proof obligations for demonstrating soundness of a
CAL derived inference rule.)

9.15 Some logics designed for credentials-based authorization provide special-
purpose compound principals for specifying that fine-grained accountability can
be specified. Give CAL formulas that might be used to replace each of the
following constructions. Justify each answer by showing that appropriate dis-
tinctions in accountability are preserved (e.g., despite delegations).

(a) “(P for R) says C” which is intended to signify that C should be at-
tributed to principal P serving in role R (as distinct, say, from P serving
in other roles or other principals serving in role R).

(b) “(P quoting R) says C”, which is intended to signify that P holds R
accountable for C

(c) “(P as R) says C”, which is intended to signify that P is acting under
a name that makes it accountable for some different set of beliefs than
usual.

9.16 Consider a set G = {P1, ..., Py} of principals, where each knows private
key k (so k is not all that private) corresponding to some public key K. We
might contemplate defining a new kind of group principal, the cryptographic
group principal Pg . Worldview w(Pg ) contains only those beliefs C for which
a k-signed bit string S, (“K says C”) has been created by some principal.

(a) Give a formal definition for worldview w(Pk).

(b) Does CAL remain sound if cryptographic group principals like PE are
added. Explain why or why not.

9.17 With an (m, n)-threshold digital signature scheme, random shares s}, sz,
..., sp are generated from a private key k. Knowledge of share sfc is necessary
and sufficient for constructing si-partially-signed bit string S (b) for any given
bit string b. Moreover, not only can a k-signed bit string S, (b) be computed
in the usual way, but it can be computed from any set comprising exactly m
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distinct partially-signed bit strings for b—a publicly-known function TDSS ,,, n)
is invoked with that set of partially-signed bit strings as arguments:

Sp(b) = TDSS (1.n)(Sk(b), SE(D), ..., SF"(b))

Consider a set G = {Py,..., Px} of principals. An N-replicated group prin-
cipal PéN’N) is characterized by

Cew(P) A ... ANCew(Py) = CewPS ™)

so, by definition, beliefs in PéN’N) are necessarily held by all N constituents in

G.
(a) Give a formal definition for a worldview w(PéN’N))

inference rules of CAL remain sound.

being sure that all

(b) Suppose that there is a well known public key K¢ associated with G, that
corresponding private key kg is known to no principal, but that principal
P; in G is the sole principal that knows share SZG of kg. Propose a
protocol for issuing a credential that conveys K¢ says C for any belief C
where C € w(P;) holds for all principals P; € G.

PéN,N)

(c) Give an argument that K¢ speaksfor is sound.

(d) Do CAL inference rules A-GROUP-SAYS-1, A-GROUP-DELEG, and A-GROUP-
SAYS-E become unsound if conjunctive group principal P, is replaced by
. - (N,N)
replicated group principal P, .
9.18 Defining characteristic (9.30) of beliefs in worldview w(H (b > rep(C)))
incorporates beliefs C' whose representation do not appear in b > rep(C) nor
are derived from the belief C that does appear. Worldview w(H (b > rep(C)))
therefore contains what might be termed spurious beliefs. We might consider
substituting
Inity (b repcyy = 1C}
in the definition of w(H (b > rep(C))) as an alternative for avoiding spurious
beliefs. If it works, what advantages does the alternative offer over the scheme
given in §9.6.27 Does the alternative work?

9.19 One approach to kernel support for credential integrity is outlined in
§9.6.3. We can use CAL to give a formal account of this approach by considering
the operating system to be a principal, OS.

(a) What properties should Init og satisfy with regard to beliefs that processes
hold and/or beliefs that are being stored in WV'?

(b) Suppose the representation of some belief C (say) appears in the set re-
turned to P after invoking QueryCred in Figure 9.6. Explain why the
characterization of that returned belief ought to be “OS says C” rather
than simply “C”.
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(¢) What CAL assumption is both defensible and suffices for P to construct
a derivation tree having conclusion P says C from “OS says C” that
QueryCred returns.

9.20 An authorization policy is not given for the operations in Figure 9.6.
Under what assumptions is it feasible to enforce an authorization policy along
the following lines:

(i) every belief is either public or secret,
(ii) QueryCred returns public beliefs but not secret beliefs, and

(iii) P has complete control over whether a belief having form “P says C” can
become known to other principals.

9.21 Many file systems associate an access control list with each file. When
separate privileges r (read), w (write), and x (execute) are associated with the
different operations, then the access control list for a file F' defines sets ACL,(F),
ACL,(F), ACLs(F) of principals authorized to perform the designated opera-
tions. For a file system like the one sketched in §9.7 having goal formula (9.35),
we could interpret P € ACLg(F) as

FileSys says (P speaks O(F) for FileSys)
An alternative design is to use
FileSys says P € ACLg(F)

as the goal formula for P performing operation ©(F). Discuss the advantages
and disadvantages of this alternative goal formula.

9.22 Recall (from chapter 7) that a capability (i) conveys a pair (O, Privs),
where O is an object and Privs is a set of privileges, and (ii) is represented in
a way that cannot be counterfeited or corrupted.

(a) Discuss the similarities and differences of capabilities and credentials.

(b) Describe an implementation for capabilities in terms of credentials and
goal formulas. Assume that a guard exists for every operation © that
requires holding a capability that authorizes ©.

9.23 According to Figure 9.9, a separate symmetric key is required for each
client when MAC-protected messages are used to convey responses from an
authority. What additional assumptions about communications channels would
allow a single symmetric key to be used for messages being sent to a set of
clients?

9.24 Why aren’t nonces needed in responses from authorities when each of
the following mechanisms is used for communication between an authority and
client?
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(a) a system calls
(b) system-provided IPC channels
(¢) MAC-protected messages

9.25 Suppose a classification authority A issues credentials that convey
A says (F € Objs ANL(F) = Ip)

instead of
A says (F € Obj, = L(F) = Ip).

Should you endorse changing to this stronger credential? What benefits and/or
risks does this stronger credential bring?

9.26 A principal P that is not authorized to read a file F' might nevertheless be
authorized to read a file San(F') that is generated by some sanitization program
San. For instance, sanitization to support a read operation under multi-level
security might delete or modify sensitive contents to ensure £(San(F)) = L(P)
holds even if L(F) < L(P) does not.

(a) Revise goal formula template (9.40) and the rest of that account to ac-
commodate sanitization that is authorized by the classification authority
that assigns labels to a given file.

(b) Revise goal formula template (9.40) and the rest of that account to ac-
commodate sanitization that is authorized by own(f).

9.27 Sketch a credentials-based authorization scheme for each of the following.
The sketch should include an appropriate guard sequent, an explanation of what
state the guard maintains, pseudo-code for state updates, and a description of
how the guard obtains credentials needed to authorize an access request.

(a) Only the owner may perform operations on resource R.

(b) Each access request by a principal must be explicitly endorsed by that
principal’s manager.

(¢) Multi-level Confidentiality is enforced, except trusted subjects may per-
form “write down”.

(d) An individual is not allowed to read the records for two or more companies
that compete with each other.

(e) Operations on Obj are performed in a pre-specified order. In particu-
lar, ©,11(0bj) is performed by a principal only after ©;(Obj) has been
performed by some principal.

(f) Access is permitted only by those users who are over 21 years old.
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(g) After a request by P for open(F') has been performed, P may perform
at most 10 operations on F' before another request for open(F) must be
performed by P.

(h) The request to read F' must be from some authorized server that is per-
forming an operation for some user U that it authorized to undertake
operation O(F).

(i) All system administrators are allowed to add or delete new users to the
system.

(j) The company has a set Divs of divisions and each division D has a set
Mngrs  of managers. Every request must be approved by some manager
from each division.

(k) Requests must have originated by a program on a computer executing
Unix2.0.

Notes and Reading

Logical inference for making authorization decisions—a hallmark of credentials-
based authorization—goes a step beyond using authentication protocols to at-
tribute access requests. The approach derives from research [3, 21, 33] from the
late 1980’s into building secure distributed systems at Digital Equipment Corpo-
ration’s System Research Center (DEC SRC) in Palo Alto CA and a parallel ef-
fort to produce an architecture specification, The Digital Distributed System Se-
curity Architecture [13], by Digital engineers based on the East Coast. In both,
a rich language for defining principals allowed access control lists to be used
for authorizing requests that originate remotely. Rather than equating princi-
pals with users, principals were defined in terms of components (users, hard-
ware, software, and their aggregations) that together would be accountable for a
given remote access. A calculus—which included says, speaksfor, and various
operators for constructing compound principals—characterized ways that state-
ments attributed to various principals might be combined to derive an access
request attributed to some (possibly different) principal appearing on the rele-
vant access control list. The syntax of goal formulas in this early embodiment
of credentials-based authorization was constrained so that the operating system
could be programmed to decide automatically whether an accompanying set of
credentials sufficed to authorize a given access request. Earlier work [7] at DEC
SRC used deductions and formulas involving “say”, “knows”, and “authenti-
cates” (a form of speaksfor for keys) to describe a distributed authentication
service; that work seems to be the first use of the says/speaksfor metaphor in
connection with security.

PolicyMaker [8], which came next and was developed at Bell Laboratories,
avoided sacrificing expressiveness for decidability. Policies, credentials, and trust
relationships were specified as imperative programs in a safe language, and a
generic compliance checker interpreted these programs to determine whether a
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policy is satisfied by given credentials and trust assumptions. PolicyMaker’s
intended users were presumed to be more comfortable writing imperative pro-
grams than writing logical formulas. But determining whether some program
in an imperative language satisfies a property of interest is difficult—for people
as well as for machines. So our assurance is likely to be lower for a security
policy that is specified as an imperative program, and our ability to anticipate
its consequences impaired. Contrast this with security policies specified using
logical formulas, where inference rules support reasoning and derivations for
consequences can be checked mechanically.

Prolog, Datalog, and related languages for writing logic programs offer a
compromise between expressiveness and decidability. Here, a security policy
is specified declaratively as a collection of rewrite rules. Derivation of a goal
formula from such rules is decidable, and having such a derivation constitutes a
justification for authorizing an access. Early efforts to explore this approach in-
clude (chronologically): an authorization policy simulator [25], FAM/CAM [17],
ASL [16], Delegation Logic [23], SD3 [18], Binder [10], the RT family of log-
ics [24], Cassandra [6], Soutei [27], and SecPAL [5].

With proof carrying authentication (PCA) [4], virtually no expressiveness
limitations are imposed on goal formulas but each request must be accompanied
by a derivation tree for the appropriate goal formula. The programmer of a client
presumably provides code to generate the derivation tree for supporting that
client’s accesses. Checking a derivation tree is decidable, so an operating system
can determine automatically whether the accompanying derivation tree justifies
allowing an access request to proceed.

Garg and Pfenning [12] give a constructive logic with first-order quantifi-
cation over principals (but no speaksfor primitive) and give proofs of non-
interference and other meta-properties for that logic. This paper could be the
first publication to argue that authorization logics ought to be constructive on
the grounds that all of the evidence justifying an access decision will then nec-
essarily be incorporated into the derivation of a goal formula from credentials.
The choice between classical and constructive is just one dimension in the design
space for authorization logics, though. Abadi [2] explores another by deriving
consequences of incorporating various combinations of seemingly reasonable ax-
ioms for says into classical logics and into constructive logics.

CAL is a successor to Nexus Authorization Logic (NAL) [28], which was
developed as part of the Nexus [29] operating system built at Cornell. Appli-
cation needs led the Nexus group to investigate techniques (discussed in §9.8)
for accommodating changes in beliefs and for supporting revocation of creden-
tials; DeTreville [10] was earlier down this path in connection with certificate
revocation for Binder. And concerns about the performance of Nexus led to
the development (sketched in §9.6.3) of kernel caches for credentials and for
derivation trees. A Nexus document-management suite [28, 32] that supports
multi-level security policies along with various forms of document-use policies
is the source of the classification authority formalization in §9.9.

The original plan for Nexus was to adapt prior work rather than developing
a new authorization logic. Early papers [3, 4] about authorization logics suggest
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an abbreviation
P controls p: (P saysp)=p

for signifying when P is considered a trusted source about the truth of a predi-
cate p. This approach, however, imposes no limits on the propagation of incon-
sistencies and bogus beliefs. An alternative approach is to require that predi-
cates about the state be represented solely through beliefs that principals hold.
Delegation then enables beliefs about state predicates one principal holds to
become accessible to others, and non-interference ensures inconsistent or bogus
beliefs at one principal P are contained—contamination in P’s worldview can
impact worldviews of only those principals that (directly or indirectly) delegate
to P.18

NAL adopted this second alternative, taking as its starting point CDD and
the constructive first-order predicate logic in van Dalen [31]. Because CDD
is agnostic about forms of compound principals, NAL was able to incorporate
compound principals that were well-matched to what Nexus required. NAL
subprincipals are inspired by named roles in Alpaca [22].}? Groups in NAL are
specified intensionally by giving a predicate that all members satisfy; this is a
special case of dynamic threshold structures from Delegation Logic [23].

CAL simplifies NAL. First, NAL (being a CDD derivative) includes second-
order quantification, which allows speaksfor to be a derived operator:

P speaksfor ): (VC: PsaysC = (@ says(C)

CAL, for pedagogical reasons, has only first-order quantifiers, which are re-
stricted to appearing within predicate logic formulas. Therefore, speaksfor is
a primitive in CAL rather than a derived operator; CAL inference rules for
unrestricted and restricted delegation are derived inference rules in NAL.

Principals are the other significant point of difference between CAL and
NAL. CAL gives formal accounts for keys and hashes as full-fledged principals;
NAL treated these informally. In addition, CAL replaces NAL’s intensionally
defined groups with conjunctive and disjunctive group principals. Conjunctive
groups are discussed and axiomatized in Lampson et al. [21]. CAL’s disjunctive
group principals axiomatize what Syverson and Stubblebine [30] call a collective
group. CAL cannot support what they call an or-group [30] (a group G where
G says C only if P says C for some member P of group G) because an or-
group’s worldview is not necessarily closed under logical deduction and, thus,
CAL inference rule SAYS-IMP-E would not be sound.

Modal logics are finding increased application in connection with software
systems. Besides credentials-based authorization logics, modal logics for reason-
ing about event ordering (so called temporal logics) are widely used for reasoning

18The need for decoupling the beliefs of different principals had first been noted by Abadi
et al. [3, §3.2], and the description of CDD [1] made explicit the connection between non-
interference (by then an already well established term for information-flow policies) and
information-flow type systems. Garg and Pfenning [12] were the first to formalize “non-
interference” for an authorization logic.

19Prior proposals (e.g., Taos [33]) had restricted the qualifier ) used in defining a subprin-
cipal A.n to being a fixed string, which meant that only static roles could be supported.
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about concurrent programs, and modal logics for reasoning about beliefs held by
individuals and groups (so called epistemic logics®?) have been used for reason-
ing about coordination in distributed systems and in Al systems that perform
reasoning. Hughes and Cresswell [15] is an excellent introductory textbook on
modal logics.

Kripke structures [20], which were developed expressly for giving formal
semantics to modal logics, are employed by Abadi et al. [3] for the authorization
logic developed at DEC SRC. We adopted an alternative kind of structure for
CAL’s semantics, inspired by PCA [4] which interprets formulas with respect
to “worldviews” that are sets of formulas closed under logical implication. Sets
of formulas were being used in the early 1980’s by Konolige [19] for belief logics
intended to support Al planning systems, preceded by Eberle [11] as well as
Moore and Hendrix [26]. Sets of formulas also are used for BAN logic [9] (an
epistemic logic named after it’s authors Burrows, Abadi, and Needham that
was designed for proving properties of cryptographic authentication protocols).
Hirsch and Clarkson [14] show how a semantics based on the worldviews is
related to one based on Kripke structures and also give a worldviews semantics
for a logic derived from NAL; our formalization of CAL satisfaction relation
EcaL is based on this work.
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