
 1

CS5430 Homework 3: Public Key Infrastructure
General Instructions. You	are	expected	to	work	alone	on	this	assignment.

Due: October 14, 2022 11:59pm. No late assignments will be accepted.

Submit your solution using CMS. Prepare your solution as .pdf, as follows:

• Use 10 point or larger font.
• Submit each problem (as a separate file) into the correct CMS submission box for that

problem.

Problem 1: Threshold Digital Signatures.

Given a secret bit string s, define an n-way split of 𝑠	to be a set of n shares 𝑠#	, 𝑠%	, … , 	𝑠' such
that
- SS1: Secret s can be reconstructed from the n shares.
- SS2: Nothing about s can be inferred from any subset of 𝑛 − 1		or fewer shares.

The following is proposed as an implementation of an n-way split for a secret s, where
 0 ≤ 𝑠 ≤ 𝑝 − 1 holds for a prime number 𝑝 that is publicly known.
(i) For each share 𝑠.	 where 1 ≤ 𝑖 ≤ 𝑛 − 1: choose a random integer between 0 and 𝑝 − 1.	
(ii) Define 𝑠' to be: (𝑠 − ∑ 𝑠.#2.3') 𝑚𝑜𝑑	𝑝

(a) Give a procedure to reconstruct 𝑠	from a set of 𝑛	shares.

(b) Prove that a set of 𝑛 − 1 shares reveal no information about the secret 𝑠. Your proof should
show that any value of 𝑠	would be possible given any set of 𝑛 − 1	shares.

(c) A digital signature scheme provides two functions, assuming k is a private key and K is the
corresponding public key.

 k-Sign(m): uses private key k to produce a digital signature 𝜎8	for m.

 K-Verify (𝜎8	,𝑚): returns 𝑡𝑟𝑢𝑒	if and only if 𝜎8	is the digital signature generated
 for message m using private key k corresponding to public key K.

Suppose signatures are being produced by using exponentiation in mod p, as follows.

 k-Sign(m): (𝑚? mod p)

And suppose K-Verify (𝜎8	, 𝑚) is defined appropriately.

 2

Given a private key k that is a (secret) bit string, select a random value for each of 𝑘#, 𝑘%, … 𝑘'
that together satisfy

														𝑘 = 𝑘# + 𝑘% + ⋯+ 𝑘'

Using these, we can construct a set of 𝑛	partial signatures by invoking 𝑘-Sign(⋅) with each of
the 𝑘.:

 𝑘.-Sign(m): (𝑚?E mod p)

Can k-Sign(m) be recovered from the set of 𝑛	partial signatures 𝑘.-Sign(m) where 1 ≤ 𝑖 ≤ 	𝑛	?
Show how or explain why this would not be possible.

Problem 2: Self-signed Certificates.

Many CA schemes employ a self-signed certificate for the start of a certificate chain. This is a
certificate that is signed using a private key (e.g., 𝑘FGH) where that private key can only be
accessed by the principal (e.g. FBS) that the self-signed certificate is binding to the
corresponding public key (e.g., 𝐾FGH). Here is an example:

						⟨	𝐾FGH speaksfor 𝐹𝐵𝑆 ⟩	𝑘FGH

(a) What is the formaization of this message in terms of says and speaksfor operators.

(b) What -- if anything -- useful can be inferred from the message?

Problem 3: Inferences about belief sets.

The logic for says and speaksfor operators includes an inference rule R3:

𝐴	𝐬𝐩𝐞𝐚𝐤𝐬𝐟𝐨𝐫	𝐵,				𝐴	𝐬𝐚𝐲𝐬	𝑆
𝐵	𝐬𝐚𝐲𝐬	𝑆

The hypotheses of the rule (i.e. “𝐴	𝐬𝐩𝐞𝐚𝐤𝐬𝐟𝐨𝐫	𝐵"	and	"𝐴	𝐬𝐚𝐲𝐬	𝑆") are statements about the sets
of beliefs that 𝐴 and 𝐵	hold. The conclusion of the rule (i.e., “𝐵	𝐬𝐚𝐲𝐬	𝑆") is a statement about
the set beliefs that 𝐵	holds. To show that the rule R3 is sound, it suffices to show that the
meaning of the statement in the conclusion of the rule will be a true statement if the meanings of
the statements in the hypotheses are also true statements. Use this approach to show that
inference rule R3 is sound.

 3

Problem 4: Certificate Transparency.

The implementation of certificate transparency involves a Merkle Hash Tree (MHT) that stores
an append-only log of certificates that have been registered by some CA’s. By periodically
checking this append-only log, a service can see whether a bogus certificate for that service has
been registered. And to check whether a given certificate 𝐷. is in the log, the MHT is traversed
from a leaf with value 𝐷. to the root. If the computed hash for the root hash equals a signed
value that some trusted party previously computed, then 𝐷.	is indeed in the MHT.

(a) If 𝐷. is the 247th certificate to have been added to the append-only log, what is the
approximate worst-case length of the path to be traversed for looking up an arbitrary leaf? What,
if any, role does SCT (signed certificate timestamp) and/or MMD (maximum merge delay) play
in achieving this worst case?

 (b) Under what conditions, if any, is it permissible for the service that is storing MHT to
construct a new Merkel Hash Tree that contains exactly the same leaves but is better balanced
that the original?

(c) The standard certificate transparency protocol uses an append-only log and, therefore, the
contents of that log are never deleted. Consider a variation of that scheme. In this variation,
leaves in the MHT are allowed to be deleted. What restrictions would clients and servers have to
satisfy for it to be permissible to delete 𝐷. from the MHT?

