
CS5412:

THE BASE METHODOLOGY

VERSUS THE ACID MODEL

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture VIII

Today’s lecture will be a bit short

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 We have a guest with us today: Kate Jenkins from Akamai

 The world’s top “content hosting” company

 They make the web fast and Kate leads a group that using
sophisticated mathematical models to optimize the way the
company manages that content

 Issue is to offer snappy response while also making the best
possible use of internal communication bandwidth and storage

 Kate is also interviewing job applicants for a number of
Akamai openings

 After her 30-minute talk I’ll tell you about BASE and
Dynamo

Methodology versus model?

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 Today’s lecture is about an apples and oranges

debate that has gripped the cloud community

 A methodology is a “way of doing” something

 For example, there is a methodology for starting fires

without matches using flint and other materials

 A model is really a mathematical construction

 We give a set of definitions (i.e. fault-tolerance)

 Provide protocols that provably satisfy the definitions

 Properties of model, hopefully, translate to application-level

guarantees

The ACID model

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 A model for correct behavior of databases

 Name was coined (no surprise) in California in 60’s

 Atomicity: even if “transactions” have multiple
operations, does them to completion (commit) or rolls
back so that they leave no effect (abort)

 Consistency: A transaction that runs on a correct
database leaves it in a correct (“consistent”) state

 Isolation: It looks as if each transaction ran all by itself.
Basically says “we’ll hide any concurrency”

 Durability: Once a transaction commits, updates can’t
be lost or rolled back

Body of the transaction performs reads and

writes, sometimes called queries and updates

ACID as a methodology

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 We teach it all the time in our database courses

 Students write transactional code

Begin

 let employee t = Emp.Record(“Tony”);

 t.status = “retired”;

  customer c: c.AccountRep==“Tony”

 c.AccountRep = “Sally”

Commit;

 System executes this code in an all-or-nothing way

Begin signals the start of the transaction

Commit asks the database to make the effects

permanent. If a crash happens before this, or

if the code executes Abort, the transaction rolls

back and leaves no trace

Why ACID is helpful

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 Developer doesn’t need to worry about a
transaction leaving some sort of partial state

 For example, showing Tony as retired and yet leaving
some customer accounts with him as the account rep

 Similarly, a transaction can’t glimpse a partially
completed state of some concurrent transaction

 Eliminates worry about transient database inconsistency
that might cause a transaction to crash

 Analogous situation: thread A is updating a linked list
and thread B tries to scan the list while A is running

Serial and Serializable executions

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 A “serial” execution is one in which there is at most one

transaction running at a time, and it always completes

via commit or abort before another starts

 “Serializability” is the “illusion” of a serial execution

 Transactions execute concurrently and their operations

interleave at the level of the database files

 Yet database is designed to guarantee an outcome identical

to some serial execution: it masks concurrency

 Will revisit this topic in April and see how they do it

 In past they used locking; these days “snapshot isolation”

All ACID implementations have costs

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 Locking mechanisms involve competing for locks and
there are overheads associated with how long they are
held and how they are released at Commit

 Snapshot isolation mechanisms using locking for updates
but also have an additional version based way of
handing reads

 Forces database to keep a history of each data item

 As a transaction executes, picks the versions of each item on
which it will run

 So… there are costs, not so small

Dangers of Replication

CS5412 Spring 2012 (Cloud Computing: Birman)

9

 Investigated the costs of transactional ACID model on
replicated data in “typical” settings

 Found two cases

 Embarrassingly easy ones: transactions that don’t conflict at all
(like Facebook updates by a single owner to a page that others
might read but never change)

 Conflict-prone ones: transactions that sometimes interfere and in
which replicas could be left in conflicting states if care isn’t taken
to order the updates

 Scalability for the latter case will be terrible

 Solutions they recommend involve sharding and coding
transactions to favor the first case

[The Dangers of Replication and a Solution . Jim Gray, Pat Helland,

 Dennis Shasha. Proc. 1996 ACM SIGMOD.]

Approach?

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 They do a paper-and-pencil analysis

 Estimate how much work will be done as transactions

execute, roll-back

 Count costs associated with doing/undoing operations

and also delays due to lock conflicts that force waits

 Show that even under very optimistic assumptions

slowdown will be O(n2) in size of replica set (shard)

 If approach is naïve, O(n5) slowdown is possible!

This motivates BASE

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 Proposed by eBay researchers

 Found that many eBay employees came from
transactional database backgrounds and were used to
the transactional style of “thinking”

 But the resulting applications didn’t scale well and
performed poorly on their cloud infrastructure

 Goal was to guide that kind of programmer to a
cloud solution that performs much better

 BASE reflects experience with real cloud applications

 “Opposite” of ACID

 [D. Pritchett. BASE: An Acid Alternative. ACM Queue, July 28, 2008.]

A “methodology”

CS5412 Spring 2012 (Cloud Computing: Birman)

12

 BASE involves step-by-step transformation of a

transactional application into one that will be far

more concurrent and less rigid

 But it doesn’t guarantee ACID properties

 Argument parallels (and actually cites) CAP: they

believe that ACID is too costly and often, not needed

 BASE stands for “Basically Available Soft-State

Services with Eventual Consistency”.

Terminology

CS5412 Spring 2012 (Cloud Computing: Birman)

13

 Basically Available: Like CAP, goal is to promote

rapid responses.

 BASE papers point out that in data centers partitioning

faults are very rare and are mapped to crash failures

by forcing the isolated machines to reboot

 But we may need rapid responses even when some

replicas can’t be contacted on the critical path

Terminology

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 Basically Available: Fast response even if some

replicas are slow or crashed

 Soft State Service: Runs in first tier

 Can’t store any permanent data

 Restarts in a “clean” state after a crash

 To remember data either replicate it in memory in

enough copies to never lose all in any crash or pass it to

some other service that keeps “hard state”

Terminology

CS5412 Spring 2012 (Cloud Computing: Birman)

15

 Basically Available: Fast response even if some
replicas are slow or crashed

 Soft State Service: No durable memory

 Eventual Consistency: OK to send “optimistic”
answers to the external client

 Could use cached data (without checking for staleness)

 Could guess at what the outcome of an update will be

 Might skip locks, hoping that no conflicts will happen

 Later, if needed, correct any inconsistencies in an offline
cleanup activity

How BASE is used

CS5412 Spring 2012 (Cloud Computing: Birman)

16

 Start with a transaction, but remove Begin/Commit

 Now fragment it into “steps” that can be done in
parallel, as much as possible

 Ideally each step can be associated with a single event
that triggers that step: usually, delivery of a multicast

 Leader that runs the transaction stores these events
in a “message queuing middleware” system

 Like an email service for programs

 Events are delivered by the message queuing system

 This gives a kind of all-or-nothing behavior

Base in action

CS5412 Spring 2012 (Cloud Computing: Birman)

17

Begin

 let employee t = Emp.Record(“Tony”);

 t.status = “retired”;

  customer c: c.AccountRep==“Tony”

 c.AccountRep = “Sally”

Commit;

t.Status = retired

 customer c:

if(c.AccountRep==“Tony”)

 c.AccountRep = “Sally”

Base in action

CS5412 Spring 2012 (Cloud Computing: Birman)

18

t.Status = retired

 customer c:

if(c.AccountRep==“Tony”)

 c.AccountRep = “Sally”

t.Status = retired
 customer c:

if(c.AccountRep==“Tony”)

 c.AccountRep = “Sally”

Start

More BASE suggestions

CS5412 Spring 2012 (Cloud Computing: Birman)

19

 Consider sending the reply to the user before

finishing the operation

 Modify the end-user application to mask any

asynchronous side-effects that might be noticeable

 In effect, “weaken” the semantics of the operation and

code the application to work properly anyhow

 Developer ends up thinking hard and working hard!

Before BASE… and after

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 Code was often much too slow, and scaled poorly,

and end-user waited a long time for responses

 With BASE

 Code itself is way more concurrent, hence faster

 Elimination of locking, early responses, all make end-

user experience snappy and positive

 But we do sometimes notice oddities when we look hard

BASE side-effects

CS5412 Spring 2012 (Cloud Computing: Birman)

21

 Suppose an eBay auction is running fast and furious

 Does every single bidder necessarily see every bid?

 And do they see them in the identical order?

 Clearly, everyone needs to see the winning bid

 But slightly different bidding histories shouldn’t hurt

much, and if this makes eBay 10x faster, the speed

may be worth the slight change in behavior!

BASE side-effects

CS5412 Spring 2012 (Cloud Computing: Birman)

22

 Upload a YouTube video, then search for it

 You may not see it immediately

 Change the “initial frame” (they let you pick)

 Update might not be visible for an hour

 Access a FaceBook page when your friend says

she’s posted a photo from the party

 You may see an X

BASE in action: Dynamo

CS5412 Spring 2012 (Cloud Computing: Birman)

23

 Amazon was interested in improving the scalability

of their shopping cart service

 A core component widely used within their system

 Functions as a kind of key-value storage solution

 Previous version was a transactional database and, just

as the BASE folks predicted, wasn’t scalable enough

 Dynamo project created a new version from scratch

Dynamo approach

CS5412 Spring 2012 (Cloud Computing: Birman)

24

 They made an initial decision to base Dynamo on a
Chord-like DHT structure

 Plan was to run this DHT in tier 2 of the Amazon cloud
system, with one instance of Dynamo in each Amazon
data center and no “linkage” between them

 This works because each data center has “ownership”
for some set of customers and handles all of that
person’s purchases locally.

The challenge

CS5412 Spring 2012 (Cloud Computing: Birman)

25

 Amazon quickly had their version of Chord up and
running, but then encountered a problem

 Chord isn’t very “delay tolerant”

 So if a component gets slow or overloaded, Chord was
very impacted

 Yet delays are common in the cloud (not just due to
failures, although failure is one reason for problems)

 Team asked: how can Dynamo tolerate delay?

Idea they had

CS5412 Spring 2012 (Cloud Computing: Birman)

26

 Key issue is to find the node on which to store a

key-value tuple, or one that has the value

 Routing can tolerate delay fairly easily

 Suppose node K wants to use the finger to node K+2i

and gets no acknowledgement

 Then Dynamo just tries again with node K+2i-1

 This works at the “cost” of slight stretch in the routing

path in the rare cases when it occurs

What if the actual “home” node fails?

CS5412 Spring 2012 (Cloud Computing: Birman)

27

 Suppose that we reach the point at which the next

hop should take us to the owner for the hashed key

 But the target doesn’t respond

 It may have crashed, or have a scheduling problem

(overloaded), or be suffering some kind of burst of

network loss

 All common issues in Amazon’s data centers

 Then they do the Get/Put on the next node that

actually responds even if this is the “wrong” one!

K+2i-1

Dynamo example: picture

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

CS5412 Spring 2012 (Cloud Computing: Birman)

28

Dynamo example in pictures

CS5412 Spring 2012 (Cloud Computing: Birman)

29

 Notice: Ideally, this strategy works perfectly

 Recall that Chord normally replicates a key-value pair

on a few nodes, so we would expect to see several

nodes that “know” the current mapping: a shard

 After the intended target recovers the repair code will

bring it back up to date by copying key-value tuples

 But sometimes Dynamo jumps beyond the target

“range” and ends up in the wrong shard

Consequences?

CS5412 Spring 2012 (Cloud Computing: Birman)

30

 If this happens, Dynamo will eventually repair itself

 … But meanwhile, some slightly confusing things happen

 Put might succeed, yet a Get might fail on the key

 Could cause user to “buy” the same item twice

 This is a risk they are willing to take because the event

is rare and the problem can usually be corrected

before products are shipped in duplicate

Werner Vogels on BASE

CS5412 Spring 2012 (Cloud Computing: Birman)

31

 He argues that delays as small as 100ms have a
measurable impact on Amazon’s income!

 People wander off before making purchases

 So snappy response is king

 True, Dynamo has weak consistency and may incur some
delay to achieve consistency

 There isn’t any real delay “bound”

 But they can hide most of the resulting errors by making sure
that applications which use Dynamo don’t make
unreasonable assumptions about how Dynamo will behave

Conclusion?

CS5412 Spring 2012 (Cloud Computing: Birman)

32

 BASE is a widely popular alternative to transactions

 Used (mostly) for first tier cloud applications

 Weakens consistency for faster response, later cleans up

 eBay, Amazon Dynamo shopping cart both use BASE

 Later we’ll see that strongly consistent options do exist

 In-memory chain-replication

 Send+Flush using Isis2

 Snapshot-isolation instead of full ACID transactions

 Will look more closely at latter two in a few weeks

