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Today’s lecture will be a bit short 
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 We have a guest with us today: Kate Jenkins from Akamai 

 The world’s top “content hosting” company 

 They make the web fast and Kate leads a group that using 
sophisticated mathematical models to optimize the way the 
company manages that content 

 Issue is to offer snappy response while also making the best 
possible use of internal communication bandwidth and storage 

 Kate is also interviewing job applicants for a number of 
Akamai openings 

 After her 30-minute talk I’ll tell you about BASE and 
Dynamo 



Methodology versus model? 
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 Today’s lecture is about an apples and oranges 

debate that has gripped the cloud community 

 A methodology is a “way of doing” something 

 For example, there is a methodology for starting fires 

without matches using flint and other materials 

 A model is really a mathematical construction 

 We give a set of definitions (i.e. fault-tolerance) 

 Provide protocols that provably satisfy the definitions 

 Properties of model, hopefully, translate to application-level 

guarantees 



The ACID model 
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 A model for correct behavior of databases 

 Name was coined (no surprise) in California in 60’s 

 Atomicity: even if “transactions” have multiple 
operations, does them to completion (commit) or rolls 
back so that they leave no effect (abort) 

 Consistency: A transaction that runs on a correct 
database leaves it in a correct (“consistent”) state 

 Isolation: It looks as if each transaction ran all by itself.  
Basically says “we’ll hide any concurrency” 

 Durability: Once a transaction commits, updates can’t 
be lost or rolled back 

 

 



Body of the transaction performs reads and 

writes, sometimes called queries and updates 

ACID as a methodology 
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 We teach it all the time in our database courses 

 Students write transactional code 

Begin 

 let employee t = Emp.Record(“Tony”); 

      t.status = “retired”; 

       customer c: c.AccountRep==“Tony” 

  c.AccountRep = “Sally” 

Commit; 

 System executes this code in an all-or-nothing way 

Begin signals the start of the transaction 

Commit asks the database to make the effects 

permanent.  If a crash happens before this, or 

if the code executes Abort, the transaction rolls 

back and leaves no trace 



Why ACID is helpful 
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 Developer doesn’t need to worry about a 
transaction leaving some sort of partial state 

 For example, showing Tony as retired and yet leaving 
some customer accounts with him as the account rep 

 Similarly, a transaction can’t glimpse a partially 
completed state of some concurrent transaction 

 Eliminates worry about transient database inconsistency 
that might cause a transaction to crash 

 Analogous situation: thread A is updating a linked list 
and thread B tries to scan the list while A is running 



Serial and Serializable executions 
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 A “serial” execution is one in which there is at most one 

transaction running at a time, and it always completes 

via commit or abort before another starts 

 “Serializability” is the “illusion” of a serial execution 

 Transactions execute concurrently and their operations 

interleave at the level of the database files 

 Yet database is designed to guarantee an outcome identical 

to some serial execution: it masks concurrency 

 Will revisit this topic in April and see how they do it 

 In past they used locking; these days “snapshot isolation” 

 



All ACID implementations have costs 
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 Locking mechanisms involve competing for locks and 
there are overheads associated with how long they are 
held and how they are released at Commit 

 

 Snapshot isolation mechanisms using locking for updates 
but also have an additional version based way of 
handing reads 

 Forces database to keep a history of each data item 

 As a transaction executes, picks the versions of each item on 
which it will run 

 

 So… there are costs, not so small 



Dangers of Replication 
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 Investigated the costs of transactional ACID model on 
replicated data in “typical” settings 

 Found two cases 

 Embarrassingly easy ones: transactions that don’t conflict at all 
(like Facebook updates by a single owner to a page that others 
might read but never change) 

 Conflict-prone ones: transactions that sometimes interfere and in 
which replicas could be left in conflicting states if care isn’t taken 
to order the updates 

 Scalability for the latter case will be terrible 

 Solutions they recommend involve sharding and coding 
transactions to favor the first case 

[The Dangers of Replication and a Solution . Jim Gray, Pat Helland, 

 Dennis Shasha.  Proc. 1996 ACM SIGMOD.] 



Approach? 
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 They do a paper-and-pencil analysis 

 Estimate how much work will be done as transactions 

execute, roll-back 

 Count costs associated with doing/undoing operations 

and also delays due to lock conflicts that force waits 

 Show that even under very optimistic assumptions 

slowdown will be O(n2) in size of replica set (shard) 

 If approach is naïve, O(n5) slowdown is possible! 



This motivates BASE 
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 Proposed by eBay researchers 

 Found that many eBay employees came from 
transactional database backgrounds and were used to 
the transactional style of “thinking” 

 But the resulting applications didn’t scale well and 
performed poorly on their cloud infrastructure 

 Goal was to guide that kind of programmer to a 
cloud solution that performs much better 

 BASE reflects experience with real cloud applications 

 “Opposite” of ACID 

 [D. Pritchett. BASE: An Acid Alternative.  ACM Queue,  July 28, 2008.] 



A “methodology” 
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 BASE involves step-by-step transformation of a 

transactional application into one that will be far 

more concurrent and less rigid 

 But it doesn’t guarantee ACID properties 

 Argument parallels (and actually cites) CAP: they 

believe that ACID is too costly and often, not needed 

 BASE stands for “Basically Available Soft-State 

Services with Eventual Consistency”. 



Terminology 
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 Basically Available: Like CAP, goal is to promote 

rapid responses. 

 BASE papers point out that in data centers partitioning 

faults are very rare and are mapped to crash failures 

by forcing the isolated machines to reboot 

 But we may need rapid responses even when some 

replicas can’t be contacted on the critical path 



Terminology 
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 Basically Available: Fast response even if some 

replicas are slow or crashed 

 Soft State Service: Runs in first tier 

 Can’t store any permanent data  

 Restarts in a “clean” state after a crash 

 To remember data either replicate it in memory in 

enough copies to never lose all in any crash or pass it to 

some other service that keeps “hard state” 



Terminology 
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 Basically Available: Fast response even if some 
replicas are slow or crashed 

 Soft State Service: No durable memory 

 Eventual Consistency:  OK to send “optimistic” 
answers to the external client 

 Could use cached data (without checking for staleness) 

 Could guess at what the outcome of an update will be 

 Might skip locks, hoping that no conflicts will happen 

 Later, if needed, correct any inconsistencies in an offline 
cleanup activity 



How BASE is used 
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 Start with a transaction, but remove Begin/Commit 

 Now fragment it into “steps” that can be done in 
parallel, as much as possible 

 Ideally each step can be associated with a single event 
that triggers that step: usually, delivery of a multicast 

 Leader that runs the transaction stores these events 
in a “message queuing middleware” system 

 Like an email service for programs 

 Events are delivered by the message queuing system 

 This gives a kind of all-or-nothing behavior 



Base in action 
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Begin 

      let employee t = Emp.Record(“Tony”); 

      t.status = “retired”; 

       customer c: c.AccountRep==“Tony” 

  c.AccountRep = “Sally” 

Commit; 

t.Status = retired 

 customer c: 

if(c.AccountRep==“Tony”) 

    c.AccountRep = “Sally” 



Base in action 
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t.Status = retired 

 customer c: 

if(c.AccountRep==“Tony”) 

    c.AccountRep = “Sally” 

t.Status = retired 
 customer c: 

if(c.AccountRep==“Tony”) 

    c.AccountRep = “Sally” 

Start 



More BASE suggestions 
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 Consider sending the reply to the user before 

finishing the operation 

 

 Modify the end-user application to mask any 

asynchronous side-effects that might be noticeable 

 In effect, “weaken” the semantics of the operation and 

code the application to work properly anyhow 

 

 Developer ends up thinking hard and working hard! 



Before BASE… and after 
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 Code was often much too slow, and scaled poorly, 

and end-user waited a long time for responses 

 

 With BASE 

 Code itself is way more concurrent, hence faster 

 Elimination of locking, early responses, all make end-

user experience snappy and positive 

 But we do sometimes notice oddities when we look hard 



BASE side-effects 
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 Suppose an eBay auction is running fast and furious 

 Does every single bidder necessarily see every bid? 

 And do they see them in the identical order? 

 

 Clearly, everyone needs to see the winning bid 

 

 But slightly different bidding histories shouldn’t hurt 

much, and if this makes eBay 10x faster, the speed 

may be worth the slight change in behavior! 



BASE side-effects 
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 Upload a YouTube video, then search for it 

 You may not see it immediately 

 

 Change the “initial frame” (they let you pick) 

 Update might not be visible for an hour 

 

 Access a FaceBook page when your friend says 

she’s posted a photo from the party 

 You may see an  X 

 



BASE in action: Dynamo 
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 Amazon was interested in improving the scalability 

of their shopping cart service 

 

 A core component widely used within their system 

 Functions as a kind of key-value storage solution 

 Previous version was a transactional database and, just 

as the BASE folks predicted, wasn’t scalable enough 

 Dynamo project created a new version from scratch 



Dynamo approach 
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 They made an initial decision to base Dynamo on a 
Chord-like DHT structure 

 

 Plan was to run this DHT in tier 2 of the Amazon cloud 
system, with one instance of Dynamo in each Amazon 
data center and no “linkage” between them 

 

 This works because each data center has “ownership” 
for some set of customers and handles all of that 
person’s purchases locally. 



The challenge 
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 Amazon quickly had their version of Chord up and 
running, but then encountered a problem 

 

 Chord isn’t very “delay tolerant” 

 So if a component gets slow or overloaded, Chord was 
very impacted 

 Yet delays are common in the cloud (not just due to 
failures, although failure is one reason for problems) 

 

 Team asked: how can Dynamo tolerate delay? 



Idea they had 
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 Key issue is to find the node on which to store a 

key-value tuple, or one that has the value 

 

 Routing can tolerate delay fairly easily 

 Suppose node K wants to use the finger to node K+2i 

and gets no acknowledgement 

 Then Dynamo just tries again with node K+2i-1 

 This works at the “cost” of slight stretch in the routing 

path in the rare cases when it occurs 



What if the actual “home” node fails? 
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 Suppose that we reach the point at which the next 

hop should take us to the owner for the hashed key 

 But the target doesn’t respond 

 It may have crashed, or have a scheduling problem 

(overloaded), or be suffering some kind of burst of 

network loss 

 All common issues in Amazon’s data centers 

 Then they do the Get/Put on the next node that 

actually responds even if this is the “wrong” one! 

K+2i-1 



Dynamo example: picture 

N32 

N10 

N5 

N20 

N110 

N99 

N80 

N60 

Lookup(K19) 

K19 
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Dynamo example in pictures 
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 Notice:  Ideally, this strategy works perfectly 

 Recall that Chord normally replicates a key-value pair 

on a few nodes, so we would expect to see several 

nodes that “know” the current mapping: a shard 

 After the intended target recovers the repair code will 

bring it back up to date by copying key-value tuples 

 

 But sometimes Dynamo jumps beyond the target 

“range” and ends up in the wrong shard 



Consequences? 
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 If this happens, Dynamo will eventually repair itself 

 … But meanwhile, some slightly confusing things happen 

 

 Put might succeed, yet a Get might fail on the key 

 

 Could cause user to “buy” the same item twice 

 This is a risk they are willing to take because the event 

is rare and the problem can usually be corrected 

before products are shipped in duplicate 



Werner Vogels on BASE 
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 He argues that delays as small as 100ms have a 
measurable impact on Amazon’s income! 

 People wander off before making purchases 

 So snappy response is king 

 

 True, Dynamo has weak consistency and may incur some 
delay to achieve consistency 

 There isn’t any real delay “bound” 

 But they can hide most of the resulting errors by making sure 
that applications which use Dynamo don’t make 
unreasonable assumptions about how Dynamo will behave 



Conclusion? 
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 BASE is a widely popular alternative to transactions 

 Used (mostly) for first tier cloud applications 

 Weakens consistency for faster response, later cleans up 

 eBay, Amazon Dynamo shopping cart both use BASE 

 

 Later we’ll see that strongly consistent options do exist 

 In-memory chain-replication  

 Send+Flush using Isis2 

 Snapshot-isolation instead of full ACID transactions 

 

 Will look more closely at latter two in a few weeks 


