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(3.2) Definition. A sequence (xn) of real numbers is a Cauchy sequence 
if for each k in Z+ there exists Mk in Z+ such that 

(3.2.1) IXm-xnl~k-l (m,n~Mk)· 

(3.3) Theorem. A sequence (xn) of real numbers converges if and only if 
it is a Cauchy sequence. 

Proof: Assume that (xn) converges to a real number XO' Let the 
sequence (Nk) satisfy (3.1.1). Write Mk==Nzk ' Then 

IXm-xnl ~ IXm -xol +Ixn-xol ~(2k}-1 +(2k}-1 =k- 1 

for m, n~Mk. Therefore (xn) is a Cauchy sequence. 
Assume conversely that (xn) is a Cauchy sequence. Let the se­

quence (Mk) satisfy (3.2.1). Write Nk==max{3k,M2k}. Then 

IXm-xnl ~(2k}-1 (m,n~ Nk). 

Let Yk be the (2kth rational approximation to X Nk • For m~n, 

IYm - Ynl :s; IYm - XNJ + IXNm - XNJ + IX Nn - Ynl 
:s;(2m}-1 +(2m}-1 +(2n)-1 +(2n}-1 =m- 1 +n- 1. 

Therefore Y==(Yn) is a real number. To see that (xn) converges to y, we 
consider n ~ Nk and compute 

Iy-xnl ~IY- Ynl +IYn-XNJ +IXNn -xnl 
~ n- 1 +(2n}-1 +(2k}-1 ~(3k}-1 + (6k}-1 +(2k}-1 = k- 1. D 

A subsequence of a convergent sequence converges to the same 
limit. If a sequence converges, then any sequence obtained from it by 
modifications (including, perhaps, insertions or deletions) which in­
volve only a finite number of terms converges to the same limit. 

If x == (xn) is a regular sequence of rational numbers, then (x:) 
converges to x, by (2.14). 

A sequence (xn) is increasing (respectively, strictly increasing) if 
xn+ 1 ~ Xn (respectively, xn+ 1> Xn) for each n. Decreasing and strictly 
decreasing sequences are defined analogously, in the obvious way. A 
theorem of classical mathematics states that every bounded increasing 
sequence of real numbers converges. A counterexample to this state­
ment is given by any increasing sequence (xn) such that Xn = 0 or xn = 1 
for each n, but it is not known whether xn = 0 for all n. 

It is useful to supplement Definition (3.1) by writing 

limxn= 00 
n~oo 

or 
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to express the fact that for each k in Z+ there exists Nk in Z+ with 
xn>k for all n?;,Nk. We also define 

limxn= - 00 

or 

to mean that lim - Xn = 00. 

The next proposition shows that we may work with real numbers 
constructed as limits by working with their approximations. 

(3.4) Proposition. Assume that xn-+xO as n-+oo, and Yn-+Yo as n-+oo, 
where Xo and Yo are real numbers. Then 

(a) xn+ Yn-+xO+ Yo as n-+oo 

(b) xnyn-+xoYo as n-+oo 

(c) max{xn,Yn}-+max{xo,Yo} as n-+oo 

(d) Xo = c whenever Xn = c for all n 

(e) if xo=l=O and xn=l=O for all n, then X;l-+xol as n-+oo 

(f) if Xn~Yn for all n, then xo~yo. 

Proof: (a) For each k in Z+ there exists Nk in Z+ such that 

Then 

Therefore xn+yn-+xO+Yo as n-+oo. 

(b) Choose m in Z+ such that IYol ~m and Ixnl ~m for all n. For 
each k in Z+ choose Nk in Z+ with 

IXn -xol ~(2m k)- \ IYn - Yol ~(2m k)-l (n?;, Nk). 

Then for n?;, Nk, 

IXn Yn - Xo Yol ~ IXn(Yn - Yo)1 + IYo(xn - xo)1 

~m(IYn-Yol +lxn-xOJ)~k-l. 

Therefore xnyn-+xoYo as n-+oo. 

(c) Since 

Imax{xn, Yn} -max{xo, Yo}1 ~max{lxn-xol, IYn- Yol}, 

it follows that 
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(d) If Xn = c for all n, then (xn) converges to c. Therefore Xo = c. 

(e) Since IXol >0, 

IXnl ~ IXol-lxn - xol >i: IXol 
whenever n is large enough, say for n ~ no. Let k and n be positive 
integers such that n~no and IXn-xol «2k)-1IxoI2. Then 

Ix; I_Xo 11 = IXnl-llxol-llxn -xol ~2Ixol-2(2k)-llxoI2 =k- 1. 

Therefore x; 1-+ Xo 1 as n -+ 00. 

(f) We compute 

Yo - Xo = lim Yn - lim Xn = lim (Yn - xn) = lim IYn - xnl 
n~oo n~oo n~oo 

= lim max{Yn-xn, xn-Yn} =max{yo-xo,xo- Yo} ~O, 
n~oo 

by (a), (b), (c), and (d). D 

For each sequence (xn) of real numbers the number 

is called the nIh partial sum of (xn), and (sn) is called the sequence of 
partial sums of the sequence (xn). A sum So of (xn) is a limit of the 
sequence (sn) of partial sums. We write 

to indicate that So is a sum of (xJ A sequence which is meant to be 
summed is called a series. A series is said to converge to its sum. Thus 
the sequence (2 -n}:,= 1 converges to 0 as a sequence, but as a series it 

00 

converges to L 2 - n = l. 
n=1 

A convergent series remains convergent, but not necessarily to the 
same sum, after modification of finitely many of its terms. 

00 

The series (xn) is often loosely referred to as the series L xn. 
00 n= 1 

If the series L xn converges, then xn-+O as n-+oo. 
00 n= 1 00 

A series L Xn is said to converge absolutely when the series L IXnl 
converges. n= 1 n= 1 

In classical analysis a series of nonnegative terms converges if the 
partial sums are bounded. This is not true in constructive analysis. 
However, we have the following result. 
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00 

(3.5) Proposition. If I Yn is a convergent series of nonnegative terms, 
n= 1 00 

and if IXnl ~ Yn for each n, then I Xn converges. 
n= 1 

00 

Proof: Since I Yn is convergent, the sequence of partial sums is a 
n= 1 

Cauchy sequence. Therefore for each k in 7l+ there exists an Nk in 7l+ 
with m 

I Yj~k-l 

Then 
j=n+ 1 

00 

Therefore the sequence of partial sums of the series I Xn is a Cauchy 
sequence. By (3.3), the series converges. D n= 1 

The criterion of Proposition (3.5) is known as the comparison test. 
It follows from the comparison test that every absolutely convergent 
series is convergent. 00 

The terms of an absolutely convergent series I Xn may be re-
n= 1 

ordered without affecting the sum So of the series. More precisely, if A: 
00 

7l+ -+71+ is a bijection, then I Xl(n) exists and equals so. This may 
00 n= 1 

not be true if the series I Xn is merely convergent. 
n= 1 

A sequence (xn) is said to diverge if there exists E in IR. + such that 
for each k in 7l+ there exist m and n in 7l+ with m, n~k and IXm 

- xnl ~ E. The motivation for this definition is, of course, that a se­
quence cannot be both convergent and divergent. A series is said to 
diverge if the sequence of its partial sums diverges. 

00 

The series I n -1 diverges, because 
n= 1 

00 

The series I Xn diverges whenever there exists r in IR. + such that 
n= 1 

IXnl ~ r for infinitely many values of n. 
00 00 

Let I Xn and I Yn be series of nonnegative terms. The compari-
n=1 n=1 00 00 

son test for divergence is that I Xn diverges whenever I Yn diverges 
n=1 n=1 

and there is a positive integer N with xn ~ Y n for all n ~ N. 
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The following very useful test for convergence and divergence is 
called the ratio test. 

00 

(3.6) Proposition. Let L Xn be a series, c a positive number, and N a 
n= 1 
00 

positive integer. Then L Xn converges if c < 1 and 
n= 1 

(3.6.1 ) 

and diverges if c> 1 and 

(3.6.2) 

Proof: Assume that c< 1 and that (3.6.1) is valid. Then Ixnl :::;;cn-NlxNI 
00 

for n ~ N. By the comparison test, L xn converges. 
n= 1 

Next, assume that c> 1 and that (3.6.2) holds. Then 

IXnl ~Cn-N-llxN+ 11 ~ IxN+ 11 (n~ N + 1) 
and 

00 

Therefore I Xn diverges. 0 
n= 1 

A corollary of the ratio test is that if the limit 

L= limlxn+lx;11 
n~oo 

00 

exists, then L Xn converges whenever L< 1 and diverges whenever 
L>1. n=1 

The ratio test says nothing in case L = 1. To handle this case, we 
introduce stronger tests based on Kummer's criterion. 

(3.7) Lemma. Let (an) and (xn) be sequences of positive numbers, c a 
00 

positive number, and N a positive integer. Then L xn converges if 
anxn--+O as n--+oo and n=l 

(3.7.1) 

00 00 

while L xn diverges if I a; 1 diverges and 
n=l n=l 

(3.7.2) 
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Proof: Assume that anxn--+O and that (3.7.1) is valid. Let e be an 
arbitrary positive number, and choose an integer v ~ N so that ak X k 

-ajxj~ce whenever j>k~v. For suchj and k we have 
j j 

L xn~c-1 L Xn(an_1Xn_1X;;1-an) 
n=k+1 n=k+1 

=c- 1(akxk -ajxj)~ e. 

Thus Ct1 Xn): 1 is a C:uchy sequence, and so n~1 Xn converges. 

Next assume that La;; 1 diverges and that (3.7.2) holds. Then for 
n= 1 00 

each n~N, Xn~aNxNa;;1. Thus L Xn diverges, by comparison with 
00 

o 

(3.8) Lemma. Let (Yn) be a sequence of positive numbers, c a positive 
number, and N a positive integer such that 

n(YnY;;+\ -l)~c (n~N). 

Then limYn=O. 
n_oo 

Proof: For each n>N, 

YN Y;; 1 =(YN YN~ 1)(YN+ 1 YN~ 2) ... (Yn-1 Y;; 1) 
~(1 +c N- 1) ... (1 +c(n-1)-1) 

n-1 
~l+c L k- 1. 

k=N n-1 
Given e>O, choose an integer v>N so that L k- 1 >c- 1(e- 1 YN-1) 

k=N 
for all n ~ v. Then for such n we have Yn < e. Hence Yn --+0 as 
n--+oo. 0 

The next convergence test is known as Raabe's test. 
00 

(3.9) Proposition. Let L Xn be a series of positive numbers such that 
n= 1 00 

n(xnx;;+\ -1) converges to a limit L. Then L xn converges if L> 1, and 
diverges if L < 1. n= 1 

Proof: First note that 

n(nxn/(n+l)xn+1-1)=n(n+1)-1(n(xnx;;-t\ -1)-1) 
--+L-l as n--+ 00. 
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If L>1, it follows from (3.8) that nXn--+O as n--+oo. We then obtain the 
00 

convergence of I Xn by taking an=n (nEZ+) in Kummer's criterion. 
n= 1 00 

The same choice of an yields divergence of I Xn in case L < 1. 0 
n= 1 

Important real numbers represented by series are 
00 

e=1+ I(n!)-l 
n= 1 

and 
00 

n=4 I (-1t(2n+1)-1. 
n=O 

The series for e converges by the ratio test. The convergence of 
the series for n is a consequence of the general result that a series 

00 

I ( -1 t xn converges whenever (i) xn ~ 0 for all nand (ii) the sequence 
n= 1 

(xn) is decreasing and converges to O. To see this, consider positive in-
tegers m and n with m ~ n. Then 

o ~(xn -xn+ 1)+(Xn+ 2 -Xn+ 3)+ ... + ( _l)m+n Xm 
m 

=(-1tI(-1)k Xk 

=Xn-(Xn+ 1 -Xn+ 2)- ... +( _l)m+n Xm~Xn' 

It follows that the sequence of partial sums of the series is a Cauchy 
sequence. Therefore the series converges. 

4. Continuous Functions 

A property P which is applicable to the elements of a set S is defined 
by a statement of the requirements that an element of S must satisfy 
in order to have property P. To construct an element of S with 
property P we must construct an element of S, perform certain ad­
ditional constructions which depend on the property P, and prove that 
the entities constructed satisfy certain requirements that are character­
istic of the property P. Each property P applicable to elements of a set 
S determines a subset of S which is denoted by 

{x: XES, X has property P} 
or 

{XES: X has property Pl. 
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When the context makes it clear which set S is under discussion, we 
also write simply 

{x: x has property Pl. 
Properties applicable to elements of a set S, and subsets of S, are 

essentially the same things regarded from different points of view. 
Among the most important subsets of IR are the intervals. 

(4.1) Definition. For all real numbers a and b we define 

(a, b)= {x: xEIR, a <x <b}, 

(a, b] = {x: xEIR, a<x~b}, 

[a, b)= {x: XEIR, a~x<b}, 

[a,b]={x: xEIR, a~x~b}. 

Each of these sets in an interval, whose left and right end points are a 
and b, respectively. The interval (a, b) is open, [a, b] is closed, (a, b] is 
half-open on the left, and [a, b) is half-open on the right. If a<b, then 
the intervals are said to be proper. 

The above intervals are called finite intervals. We also introduce 
infinite intervals, by the following definitions: 

(-oo,a)={x: XEIR, x<a}, 

(-oo,a]={x: xEIR, x~a}, 

(a, 00)= {x: xEIR, a<x}, 

[a,oo)={x: XEIR, a~x}. 

An interval I is nonvoid if we can construct a real number belong­
ing to I. A nonvoid, closed, finite interval is called a compact interval. 
A nonvoid finite interval I with left and right end points a and b has 
length III =b-a. 

If an interval I is a subset of an interval J (that is, if every element 
of I also belongs to J), then we say that I is a subinterval of J. 

The rules for manipulating intervals, which we use in the sequel 
without mention or proof, are implicit in Proposition (2.11). 

(4.2) Definition. A non void set A of real numbers is bounded above if 
there exists a real number b, called an upper bound of A, such that 
x ~ b for all x in A. A real number b is called a supremum, or least 
upper bound, of A if it is an upper bound of A, and if for each e > 0 
there exists x in A with x> b - e. 

We say that A is bounded below if there exists a real number b, 
called a lower bound of A, such that b ~ x for all x in A. A real 
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number b is called an itifimum, or greatest lower bound, of A if it is a 
lower bound of A, and if for each 8> 0 there exists x in A with x < b 
+8. 

The supremum (respectively, infimum) of A is unique, if it exists, 
and is written sup A (respectively, inf A). 

A classical theorem asserts that every nonvoid set of real numbers 
that is bounded above has a supremum. A counterexample to this is 
provided by the set {xn : nEZ+} where xn =0 or xn = 1 for each n, but 
it is not known whether xn = 0 for all n. 

We now prove the constructive least-upper-bound principle. 

(4.3) Proposition. Let A be a nonvoid set of real numbers that is 
bounded above. Then sup A exists if and only if for all x, y in 1R with 
x < y, either y is an upper bound of A or there exists a in A with x < a. 

Proof: If sup A exists and x < y, then either sup A < y or x < sup A; in 
the latter case we can find a in A with 

supA-(supA-x)<a 

and hence x < a. Thus the stated condition is necessary. 
Conversely, assume that the stated condition holds. Let a l be an 

element of A, and choose an upper bound bl of A with b l >a l . We 
construct recursively a sequence (an) in A and a sequence (bn) of upper 
bounds of A such that for each n in Z+, 

and 

(ii) bn+l-an+l~i(bn-an)' 

Having found ai' ... ,an and bl , ... ,bn, if an+i(bn-an) is an upper 
bound of A, we set bn+l=an+i(bn-an) and an+l=an; while if there 
exists a in A with a>an+i(bn-an), we set an+l=a and bn+l=bn. This 
completes the recursive construction. 

By (i) and (ii), we have 

0~bn-an~(3/4t-l(bl -al) (nEZ+). 

Hence the sequences (an) and (bn) converge to a common limit t with 
an~t~bn for each n in Z+. Since each bn is an upper bound of A, so 
is t. On the other hand, given 8> 0, we can choose n so that t ~ an > t 
-8, where anEA. Hence t=supA. 0 

In Proposition (4.3), if A is contained in some interval I, then in 
order to prove that sup A exists it is sufficient to consider arbitrary 
points x and y in I with x < y. 
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(4.4) Corollary. Let the subset A of 1R have the property that for each 
8> 0 there exists a sub finite set {y l' ... , Y n} of points of A such that for 
each x in A at least one of the numbers Ix - yll, ... , Ix - Ynl is less than 
8. (Such a set A is called totally bounded.) Then sup A and inf A exist. 

Proof: It will suffice to prove that sup A exists. To this end, let x and 
Y be real numbers with X<Y, and set lX=t(y-X). Choose points 
a l , •.. , aN in A such that for each a in A at least one of the numbers 
la-all, ... , la-aNI is less than IX. For some n with 1 ~n~ N we have 

an>max {al' ... , aN} -IX. 

Either x<an or an<x+21X. In the latter case, if aEA and we choose k 
with la-akl <IX, we have 

a~ak+la-akl <an +IX+IX<x+41X= y, 

so that Y is an upper bound of A. Thus supA exists, by (4.3). D 

Often when one real number depends on another the dependence 
is smooth, or continuous. An exact description of what this means is 
given in the following definition. 

(4.5) Definition. A real-valued function f defined on a compact in­
terval I is continuous on I if for each 8>0 there exists W(8»0 such 
that If(x)-f(Y)I~8 whenever x,YEI and Ix-YI~w(8). The operation 8 
HW(8) is called a modulus of continuity for f 

A real-valued function f on an arbitrary interval J is continuous on 
J if it is continuous on every compact subinterval I of J. 

For example, when a and b are real numbers with a<b, then f is 
continuous on (a, b) if and only if it is continuous on [a+(j, b-(j] for 
each (j with O<(j<t(b-a). 

A modulus of continuity W is an indispensable part of the defini­
tion of a continuous function on a compact interval, although some­
times it is not mentioned explicitly. In the same way, moduli of 
continuity of the restrictions of f to each compact subinterval are 
indispensable parts of the definition of a continuous function f on a 
general interval. 

Constant functions, and the identity function XH x, are continuous 
on every interval. 

(4.6) Proposition. If f: [a, b] -+ 1R is a continuous function on a compact 
interval, then the quantities 

supf=sup{f(x): xE[a, b]} 
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and 
inff=inf{f(x): xE[a, b]} 

(called, respectively, the supremum and the infimum of f on the interval 
[a, b]) exist. 

Proof: Consider any B > o. Choose real numbers a = ao ~ a1 ~ ... ~ an 
=b such that ai+l -ai~w(B) (O~i~n-l), where w is a modulus of 
continuity for f Then for each x in [a, b] we have Ix -ad ~W(B), and 
therefore If(x) - f(ai)1 ~ B, for some i. Since B is arbitrary, it follows 
that the set {f(x): xE[a,b]} is totally bounded. Therefore supf and 
inf f exist, by (4.4). D 

Let f: A -+ 1R. and g: A -+ 1R. be two functions defined on the same 
set A. We define the sum function f + g: A -+ 1R. by 

(f + g)(x) =f(x) +g(x) (xEA). 

Such functions as fg, If I, and max {j, g} are defined similarly. If g(x) 
=1= 0 for each x in A, then g -1: A -+ 1R. is defined by 

g-I(X)=(g(X))-1 (xEA). 

We also write l/g for g-t, andf/g for the quotient functionfg-l. 
The proof of the following proposition, which resembles the proof 

of Proposition (3.4), is left to the reader. 

(4.7) Proposition. Let f and g be continuous real-valued functions 
defined on an interval I. Then the functions f + g, f g, and max {j, g} are 
continuous on I. If f is bounded away from 0 on every compact 
subinterval J of I - that is, if If(x)1 ~ c for all x in J and some c > 0 
(depending on J) - then f- 1 is continuous on I. 

Proposition (4.7) implies that the quotient of continuous functions 
is continuous, provided that the denominator is bounded away from 0 
on every compact subinterval. It also implies that a polynomial func­
tion 

is continuous on every interval, and that If I is continuous on each 
interval where f is continuous. 

The composition of continuous functions is continuous, in the 
sense that if f: I-+J and g: J-+1R. are continuous, then gof is con­
tinuous, provided that f maps every compact subinterval of I into a 
compact subinterval of J. To prove this, it is sufficient to consider the 
case in which I and J are both compact. Let w be a modulus of 
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continuity for f, and a a modulus of continuity for g. Then if x, YEI, 
e > 0, and Ix - yl ~ w(a(e)), we have If(x) - f(Y)1 ~ aCe). Therefore 

Ig(f(x)) - g(f(Y))1 ~ e. 

It follows that go f is continuous, with modulus of continuity eHw(a(e)). 
Classically, a continuous function maps an interval onto an in­

terval. We now prove a weak version of this result, known as the 
intermediate value theorem. 

(4.8) Theorem. Let f be a continuous map defined on an interval I, and 
let a, b be points of I with f(a) <feb). Then for each Y in [f(a), feb)] 
and each e > 0, there exists x in [min {a, b}, max {a, b}] such that 
If(x)- yl <e. 

Proof: Since f is continuous, we must have a=l=b. We may assume that 
a < b. Consider y in [f(a),f(b)] and e > O. Let 

m=inf{lf(x) - yl: a~x~b}, 

which exists by (4.6). Suppose that m>O. Then f(a)-y~ -m and feb) 
- y~m. Let w be a modulus of continuity for f on [a, b], and choose 

points a=xo~xl~ ... ~xn=b such that Xk+l-xk~w(m) for O~k~n 
-1. Then for such k we have 

If(Xk+d - y -(f(Xk) -y)1 = If(Xk+d - f(Xk) I ~m. 
Since If(x) - yl ~ m for all x in [a, b], it follows that the quantities 
f(Xk)-y and f(Xk+I)-y are either both positive or both negative. 
Therefore the quantities f(Xi) - Y (0 ~ i ~ n) are either all positive or all 
negative. Hence f(a) - y and feb) - yare either both positive or both 
negative. This contradiction ensures that the possibility m > 0 is ruled 
out; so that m < e, and the desired conclusion follows. 0 

Under additional hypotheses satisfied by many of the common 
elementary functions of analysis, Theorem (4.8) can be strengthened to 
yield the conclusion thatf(x)=y for some x in [min{a,b}, max{a,b}]. 
For example, this strong conclusion obtains whenever f is strictly 
increasing, in the sense that f(x) > f(x') for any two points x, x' of its 
domain with x>x'. For in that case, taking a<b we can construct 
sequences (an), (bn) in [a, b] such that for each n in Z+, 

(i) a = al ~ a2 ~ ... ~ an ~ bn ~ ... ~ b2 ~ bi = b 

(ii) f(an)~y~f(bn) 

(iii) bn + I - an + I ~ (2/3)(bn - an)· 



4. Continuous Functions 41 

The sequences (an), (bn) then converge to a common limit x in [a, bJ 
with f(x) = y. 

Just as sequences of real numbers can converge to real numbers, 
sequences of continuous functions can converge to continuous func­
tions. In fact, most of the important functions of analysis are defined 
as limits of sequences of continuous functions. 

(4.9) DefinitiOiL A sequence (in) of continuous functions on a compact 
interval I converges on I to a continuous function f if for each I> > 0 
there exists N, in 7l + such that 

(4.9.1) Ifn(x) - f(x)1 ~ I> (xEI, n ~ N,). 

A sequence (in) of continuous functions on an arbitrary interval J 
converges on J to a continuous function f if it converges to f on every 
compact subinterval I of J; in that case, f is called the limit of the 
sequence (fn). 

Definition (4.9) can be recast to bear a closer resemblance to 
Definition (3.1). To this end, we define the norm Ilflll of a continuous 
function f on a compact interval I to be the supremum of If I on I. 
Then (in) converges to f on I if and only if for each k in 7l + there 
exists Nk in 7l+ with 

Ilin - flll~k-l (n~Nk)· 

(4.10) Definition. A sequence (fn) of continuous functions on a com­
pact interval I is a Cauchy sequence on I if for each 1»0 there exists 
M, in 7l+ such that 

(4.10.1) lin. (x) - fn(x)1 ~ I> (xEI; m, n ~ M E). 

A sequence of continuous functions on an arbitrary interval J is a 
Cauchy sequence on J if it is a Cauchy sequence on every compact 
subinterval of J. 

The sequence (fn) is a Cauchy sequence on the compact interval I 
if and only if for every k in 7l+ there exists Mk in 7l+ such that 

IIfm - inlll~ k- 1 (n, n~ Mk). 

Notice that a sequence (cn) of real numbers converges if and only if 
the corresponding sequence of constant functions, which we also de­
note by (en), converges on a given nonvoid interval I, and that a 
sequence of real numbers is a Cauchy sequence if and only if the 
corresponding sequence of constant functions is a Cauchy sequence on 
I. Because of these remarks, the following theorem is a generalization 
of Theorem (3.3). 
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(4.11) Theorem. A sequence Un) of continuous functions on an interval J 
converges on J if and only if it is a Cauchy sequence on J. 

Proof: Assume that Un) converges to f on J. Let I be any compact 
subinterval of J. For each 6>0 choose N. in Z+ satisfying (4.9.1), and 
write M.=.N./ 2 • Then whenever m, n?;M. and xEI, we have 

Ifm(x) - J,,(x)1 ~ Ifm(x) - f(x)1 + Ifn(x) - f(x)1 

~6/2+6/2=6. 

Therefore Un) is a Cauchy sequence on I. It follows that (J,,) is a 
Cauchy sequence on J. 

Assume conversely that (J,,) is a Cauchy sequence on J. Then for 
each x in J, Un(x)) is a Cauchy sequence of real numbers, whose limit 
we denote by f(x). We shall show that f: J -+JR is a continuous 
function and that (J,,) converges to f on J. It is enough to show that f 
is continuous on each compact subinterval I of J, and that (J,,) 
converges to f on I. To this end, choose the positive integers M. such 
that (4.10.1) is valid, and for each n in Z+ let Wn be a modulus of 
continuity for J" on I. For each 6>0 write 

where M=.M./ 3. Then whenever x, YEI and Ix -yl ~W(6), we have 

If(x) - f(y)1 ~ If(x) - fM(X)1 + IfM(X) - fM (y) I + IfM(Y) - f(Y)1 

= lim I J" (x) - fM(X) I + IfM(X) - fM (y) I + lim IfM(Y) - J,,(Y)I 

Therefore f is continuous, with modulus of continuity w. Finally, if 
xEI, 6>0, and n?;M., then 

Ifn(x) - f(x)1 = lim Ifn(x) - fm(x)1 ~ 6. 

Hence Un) converges to f on 1. D 

Notations to express the fact that (J,,) converges to fare 

limfn= f 

and 
fn-+f as n-+oo. 

We also write simply J,,-+ f 
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To each sequence (fn) of continuous functions on an interval I 
corresponds a sequence (gn) of partial sums, defined by 

n 

gn== Ik 
k=l 

If (gn) converges to a continuous function g on I, then g is the sum of 
00 

the series L fn' 
n=l 

n=l 
00 

and the series is said to converge to g on I. If L Ifni converges on I, 
00 n=1 

then L!. is said to converge absolutely on I. An absolutely con-
n=l 

vergent series of functions converges. 
The comparison test and the ratio test for convergence carryover to 

00 

series of functions. The comparison test states that if I gn is a con-
n=l 

vergent series of nonnegative continuous functions on an interval I, 
00 

then the series I fn of continuous functions on I converges on I 
n=l 

whenever Ifn(x)1 ~gn{x) for all n in Z+ and all x in 1. 
00 

The ratio test states that if I fn is a series of continuous functions 
n=l 

on an interval J such that for each compact subinterval I of J there 
exist a constant c[, O<c[< 1, and a positive integer N[ with 

00 

then I!. converges absolutely on J. 
n=1 00 

A power series is a series of the form I an{x - xot, where an{x 
n=O . 

- xot represents the function x I-+an{x - xot and where ao{x - xo)O 
== ao for all x. The ratio test has the following corollary. 

00 

(4.12) Proposition. Let the power series L an{x -xot have the property 
n=O 

that there exist r>O and N in Z+ such that lan+ll~r-llanl for all 
n"?, N. Then the series converges absolutely on the interval (xo -r, Xo 
+r). 

Proof: If I is a compact subinterval of (xo - r, Xo + r), then there exists 
ro with 0 < ro < r such that Ix - xol ~ ro for all x in I. Then 

lan+l{x-xot+ll~r-lrolan{x-xotl (n"?,N, xEI). 

By the ratio test, the series therefore converges absolutely on I. 0 
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5. Differentiation 

The rate at which a function is changing is a fundamental property of 
the function. Here is the precise definition of this concept. 

(5.1) Defmition. Let f and g be continuous functions on a proper 
compact interval I, and let (j be an operation from JR. + to JR. + such 
that 

If(y)- f(x)- g(x) (y-x)1 ~ely-xl 

whenever e>O, x, YEI, and Iy-xl~(j(e). Then f is said to be differen­
tiable on I, g is called a derivative of f on I, and (j is called a modulus 
of differentiability for f on I. 

If f and g are continuous functions on a proper interval J, then g 
is a derivative of f on J if it is a derivative of f on every proper 
compact subinterval of J; f is then said to be differentiable on J. 

To express that g is a derivative of f we write 

df(x) 
g=f,' or g=Df, or g(x)=~. 

One way to interpret Definition (5.1) is that the difference quotient 

(f(y) - f(x)) (y -X)-1 

approaches g(x) as y approaches x. In other words, g is the rate of 
change of f 

If f has two derivatives on I, then they are equal functions. 

(5.2) Theorem. Let f1 and f2 be differentiable functions on an interval I. 
Then Ii + f2 and f1 f2 are differentiable on I. In case f1 is bounded away 
from 0 on every compact subinterval of I, then f1- 1 is differentiable on I. 
The function Xl-+X is differentiable on JR.. For each c in JR. the function 
Xl-+C is differentiable on JR.. The derivatives in question are given by the 
following relations: 

(a) D(f1 + f2) = Df1 +Df2 

(b) D (f1 f2) = f1 D f2 + f2 D f1 

(c) Df1- 1 = - f1- 2 Df1 

(d) 
dx 
-=1 
dx 

(e) 
dc 
dx =0. 
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Proof: It is enough to consider the case in which I is compact. Let 151 
and 15 2 be moduli of differentiability for hand f2, respectively, on I, 
and WI a modulus of continuity for fl on I. 

(a) Whenever x,YEl and ly-xl~b(e)=min{bl(e/2), 15 2 (e/2n, we 
have 

Ifl(Y) + f2(Y) -(fl(X) + f2(X)) -(f{(x) + f;(x)) (y -x)1 

~lfl(Y) - fl(X) - fHx)(y -x)1 + If2(Y) - f2(X) - f;(x)(y -x)1 

Thus h + f2 is differentable on I, with derivative f{ + f; and modulus 
of differentiability b. 

(b) Let M be a common bound for Ihl, If21, and If;1 on the 
interval I. (For instance, define M=max{llflI11, Ilf2111, Ilf;1I1}.) Then 
whenever x, YEl and 

Iy -xl ~ 15 (e) = min {b1((3M)-1 e), b2((3M)-1 e), wl((3M)-1 en, 

we have 

Ifl(Y) f2(Y) - fl(X) f2(X) -(fl(X) f;(x) + f2(X) f{(x)) (y -x)1 

~ Ifl(y)llf2(Y) - f2(X) - f;(x) (y -x)1 

+ Ifl(Y) - fl(X)llf;(x)lly -xl 

+ If2 (x)llfl (y) - fl (x) - f{(x) (y - x)1 

~3M(3M)-1 ely-xi =eIY-xI. 

Therefore h f2 is differentiable on I, with derivative h f; + f2 f{ and 
modulus of differentiability b. 

(c) For each e>O write 

b(e)=min{b1(iM- 2 e), wl(iM- 4 en 

where M=max{llfl- 1 111,11f{1I1}. Then whenever x, YEl and Iy-xl 
~ 15 (e), we have 

Ifl- 1(y) - fl- 1(X) + h- 2(X) f{(x)(y -x)1 

= Ih- 1(x) fl- 1(y)llfl(Y) - fl(X) - fl(Y) h- 1(x) f{(x) (y -x)1 

~M2Ifl(Y) - fl(X) - f{(x) (y -x)1 

+M2 If{(x) fl(X)-ll Ifl(Y)-fl(X)1 Iy-xl 

~M2(iM-2 e) Iy-xl +M4 (iM- 4 e) ly-xl=eIY-xI. 

Therefore h- 1 is differentiable on I, with derivative - h- 2 f{ and 
modulus of differentiability b. 
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(d) This is obvious. 

(e) This is obvious too. 0 

(5.3) Corollary. For all positive integers n, 

(5.3.1 ) 
dxn 
h=nxn- 1. 

Proof: The proof is by induction on n. When n = 1, (5.3.1) is just (d) of 
Theorem (5.2). If (5.3.1) is true for a given value of n, then 

dxn+1 d(x·xn) 
xn +x(n xn- 1) =(n + 1) xn, 

dx dx 

by (b) of Theorem (5.2). Therefore (5.3.1) is true for all n. 0 

Theorem (5.2) and its corollary imply the formula 

D(fr f2- 1) = f2- 2(f2 D fr - fr D f2) 

for the derivative of a quotient, and the formula 

D (± an_kxk) = ± kan_kxk-1 
k=O k=1 

for the derivative of a polynomial. 
The next theorem is the so-called chain rule for the derivative of a 

composite function. Its intuitive meaning is that the rate of change of 
quantity C with respect to quantity A is the product of the rate of 
change of C with respect to some third quantity B by the rate of 
change of B with respect to A. 

(5.4) Theorem. Let f: I -+lR. and g: J -+lR. be differentiable functions 
such that f maps each compact subinterval of I into a compact subin­
terval of J. Then go f is differentiable, and 

(5.4.1) (g 0 f), = (g' of) f'. 

Proof: It is no loss of generality to assume that I and J are compact. 
Let tJI be a modulus of differentiability and wI a modulus of con­
tinuity for f on I. Let tJg be a modulus of differentiability for g on J. 
For each 8>0 write 

where 
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Then for x, y in I and Iy - xl ~ 15 (e) we have If(y) - f(x)1 ~ t5 g (a), so that 

Ig(f(y)) - g(f(x)) - g'(f(x)) (f(y) - f(x))1 ~ a If(y) - f(x)l. 
Also 

If(y) - f(x)1 ~ 111'111 Iy -xl + If(y) - f(x) - f'(x) (y -x)1 
and 

If(y) - f(x) - f'(x)(y -x)1 ~Ply -xl· 

Using these inequalities and noting that a 111'111 < e/2, we compute 

Ig(f(y)) - g(f(x)) - g'(f(x)) f'(x) (y - x)1 
~ Ig(f(y)) - g(f(x)) - g'(f(x)) (f(y) - f(x))1 

+ Ig'(f(x))llf(y) - f(x) - f'(x) (y -x)1 
~ a If(y) - f(x)1 + Ilg'IIJ If(y) -f(x) - f'(x) (y -x)1 
~a 111'111 Iy-xl +(a+ Ilg'IIJ) If(y) - f(x) - f'(x)(y -x)1 

e e 
<"2ly-xl+"2ly-xl=ely-xl. 

It follows that go f is differentiable on I, with derivative (g' of) I' and 
modulus of differentiability 15. 0 

The next lemma is known as Rolle's theorem. 

(5.5) Lemma. Let f be differentiable on the interval [a, b], and let f(a) 
=f(b). Then for each e>O there exists x in [a,b] with If'(x)l~e. 

Proof: Let 15 be a modulus of differentiability for f on [a, b]. Let 

m=inf{lf'(x)l: xE[a,b]}, 

which exists, by (4.6). Suppose that m>O. We may assume that 
f'(a)~m. For each x in [a,b] we have f'(x)~m. For if f'(x)<m, then 
f'(x) ~ -m, so that, by the iritermediate value theorem (4.8), there 
exists ~ in [a,b] with If'(~)1 <m; this contradicts the definition of m. 
Now choose points a=xO~xl ~ '" ~xn=b so that Xk+l -xk~t5(tm) 
(O~k~n-l). Then 

0= f(b) - f(a) 
n-l 

= I (f(Xk+l)- f(Xk)) 
k=O 
n-l n-l 

= L f'(Xk)(Xk+l -Xk)+ I (f(Xk+l)- f(Xk)- f'(Xk)(Xk+l -Xk)) 
k=O k=O 
n-l n-l 

~ L m(Xk+l -Xk)- L tm(Xk+l-Xk) 
k= 0 k= 0 

=tm(b - a) > O. 
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This contradiction ensures that m = o. The desired conclusion follows 
immediately. D 

Rolle's theorem implies the mean value theorem, which gives a 
basic estimate for the difference of two values of a differentiable 
function. 

(5.6) Theorem. Let f be differentiable on the interval [a, b]. Then for each 
e > 0 there exists x in [a, b J with 

If(b) - f(a) - f'(x)(b -a)1 ~e. 

Proof: Define the function h on [a, b J by 

hex) =(x - a) (f(b) - f(a» - f(x)(b - a) (xE[a, bJ). 

Then h(b) = heal = - f(a)(b -a). By (5.5), there exists x in [a, b J with 

e~ Ih'(x)1 = If(b) - f(a) - f'(x)(b -a)l· D 

A function f on a proper interval I is increasing (respectively, 
strictly increasing) if f(x) ~ fey) (respectively, f(x) > fey»~ whenever 
x, YEI and x> y. We say that f is decreasing (respectively, strictly 
decreasing) if - f is increasing (respectively, strictly increasing). It 
follows from Theorem (5.6) that if f: I ~ 1R. is differentiable on I and 
f'(x) ~ 0 (respectively, f'(x) ~ 0) for all x in I, then f is increasing 
(respectively, decreasing) on I. 

(5.7) Definition. Let f,j<1),f(2), ... ,j<n-l) be differentiable functions on 
a proper interval I such that 

Df = j<l), Dj<l)= f(2), ... ,Dj<n-2)= j<n-l), 

and set j<n)=Dj<n-l). Then j<n) is called the nth derivative of f on I, 
and is also written Dnf; f is then said to be n times differentiable on I. 
The function f itself may be written j<0) or DO! 

A natural way to simplify a continuous function and set it up for 
computation is to replace it by a polynomial approximation. The 
basic result on polynomial approximation of differentiable functions is 
Taylor's theorem ((5.10) below). To see the motivation for Taylor's 
theorem, consider an n times differentiable function f on an interval I, 
and a point a in I. It is natural to approximate f by a polynomial of 
degree n whose derivatives of orders 0, 1, ... , n at a have the same 
values as the corresponding derivatives of f at a. The unique such 


