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1 Introduction

Euclid’s methodology of geometry, as presented in the Elements, is expressed
faithfully using a computational semantics for intuitionistic logic. We consider
a faithful expression of Euclid’s methodology to be one in which proofs and
constructions have an embedded correspondence.

2 Euclid’s Propositions

Consider a few of Euclid’s propositions:

• Proposition 1 : To construct an equilateral triangle on a finite straight
line.

• Proposition 2 : To place a straight line equal to a given straight line with
one end at a given point.

• Proposition 4 : If two triangles have two sides equal to two sides respec-
tively, and have the angles contained by the equal straight lines equal, then
they also have the base equal to the base, the triangle equals the triangle,
and the remaining angles equal the remaining angles respectively, namely
those opposite the equal sides.

• Proposition 6 : If in a triangle two angles equal one another, then the
sides opposite the equal angles also equal one another.

• Proposition 9: To bisect a given rectilinear angle.

We can explain the meaning of these propositions by describing the evidence
that can be given for them. The evidence for Propositions 1, 2, and 9, is an
explicit construction of a geometric object. The evidence for Propositions 4 and
6 is the demonstration that certain relations hold for a given object. In literature
on the Elements, it is common to refer to the former type of propositions as
problems and the latter as theorems.
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3 Postulates

The evidence for a problem is the construction of a geometric object and the
verification that the geometric object has the properties specified in the state-
ment of the problem. The geometric object is constructed by applications of
the straightedge and compass. In the Elements, the admissible applications of
the straightedge and compass are given as postulates. There are five, but we
will list only the first three here:

1. To draw a straight line form any point to any point

2. To produce a finite straight line continuously in a straight line

3. To describe a circle with any center and distance

These postulates can be given a functional reading:

1. Postulate 1 specifies a function with two points as inputs and a line as
output

2. Postulate 2 specifies a function with a straight line as input and the ex-
tension of the straight line as output.

3. Postulate 3 specifies a function with a point and finite straight line (dis-
tance) as input and a circle as output.

Thus, we expect that the evidence for a problem from the Elements will consist,
at least in part, of functions corresponding to the postulates described above.

We will focus on propositions of the form of problems here, because their
form coincides with programming problems. Specifically, both geometric con-
struction problems and programming problems require the construction of a
(computable) function that transforms an object of the input type into an ob-
ject of the output type that satisfies some property [1].

4 Evidence Semantics

Evidence semantics provides a computational explanation of the meaning of
propositions in terms of the evidence that can be given for them.

How can we formally express propositions and their evidence? Consider the
propositional variable A which represents some arbitrary proposition. Then we
will denote specific evidence for A by a. We can then abbreviate the phrase “a
is evidence for A” by a : [A] (or a ∈ [A]), where [A] is the type of evidences for
A [2].
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Proposition Evidence Type Evidence Term
A⇒ B function space: A→ B λa.b
A ∧ B Cartesian product: A×B (a, b)
A ∨ B disjoint union: A+B inl(a), inr(b)
∀x : A.B(x) dependent function space: x : A→ B(x) λa.b
∃x : A.B(x) dependent product: x : A×B(x) (a, b)

⊥ empty set : {} 0

4.1 Application: Euclid’s Propositions

In general, problems from the Elements are of the form ∀x : A ∃y : B(x).C(x, y)
and theorems are of the form ∀x : A.B(x). This is illustrated by the following
example.

Consider Proposition 1 from Book I of the Elements:

Example 4.1. Proposition 1 : To construct an equilateral triangle on a finite
straight line.

The evidence for this proposition is a function taking a straight line into
a pair consisting of a geometric object and a proof that the geometric object
is an equilateral triangle. The function will correspond to applications of the
straightedge and compass postulates.

5 Formalizing the Straightedge and Compass

5.1 The Predicates

We take only one type of primitive geometric object: points. On points we take
as primitive the binary apartness relation and the ternary leftness relation.
Leftness establishes the notion of orientation on our Euclidean Plane.

Definition 1. A Euclidean Plane structure has a primitive type Point together
with the following relations for any a, b, c, d ∈ Point.

Congruence, written ab ∼= cd, says that segments ab and cd have the same
length.

Betweenness, written a b c, says that the point b lies between a and c. This
relation is not strict, so b could be equivalent to either a or c.

Apartness is a binary relation, signified by #, on points. If a#b we say that
a is separated from b.

Leftness is a ternary relation on points, written a left of bc, and says that
the point a is to the left of the line bc (by bc we mean the directed line
from b to c).
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5.2 The Postulates

The Magnifying glass: M(a, b, c) is the function that, by magnification, de-
cides whether c#a or c#b. Thus M(a, b, c) ∈ c#a+ c#b.

Orientation: requires that a point that is separated from a line is either to
the left or right of the line. Thus, for any a, b, c ∈ Point, the function
LeftOrRight(a, b, c) takes evidence for a#bc into evidence for orientation:
LeftOrRight(a, b, c) ∈ (a left of bc+ a right of bc).

Straightedge-Straightedge“SS” : formalizes the construction by straight-
edge of the point of intersection of two lines. For any
a, b, x, and y ∈ Point, if x left of ab and y left of ba a straightedge can be
applied twice, once to construct the line ab and again to construct the line
xy, in order to determine the point of intersection of ab and xy. We let
SS(a, b, x, y) be the point z constructed by the SS axiom.

a

b

x

y

z

Figure 1: The Straightedge-Straightedge constructor for z = SS(a, b, x, y).

Straightedge Compass “SC”: formalizes the extension of a segment by ap-
plication of a collapsing compass. For any a, b, c, and d ∈ Point, SC
constructs from line ab and circle C(b, d) with radius d centered on b,
points u and v, where u is on the opposite side of a from b and v is on the
same side of b as a. The functions SCO(a, b, c, d) and SCS(a, b, c, d) (where
“O” abbreviates opposite and “S” abbreviates same) construct these two
points.

Compass-Compass “CC” : formalizes the compass construction of two points
resulting from the intersection of two distinct, strictly overlapping circles.
For any a, b, c, and d ∈ Point the CC axiom determines the circles C(a, b)
and C(c, d) (C(a, b) of radius b centered on a and C(c, d) of radius d
centered on c) and constructs u and v ∈ Point where u left of ac and
v left of ca such that u and v lie on both C(a, b) and C(c, d). The func-
tions CCL(a, b, c, d) and CCR(a, b, c, d) construct u and v, respectively.
The CC construction is demonstrated in figure 3.
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Figure 2: The Straightedge Compass constructor: u = SCO(a, b, c, d) and v =
SCS(a, b, c, d)
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Figure 3: The Compass-Compass constructor for the points u and v such that
u left of ac and v right of ac: u = CCL(a, b, c, d) and v = CCR(a, b, c, d).

Non-triviality : guarantees that there exist two separated points, O and X
such that O#X.

5.3 Nuprl Extracts

We begin with Euclid’s first proposition, which constructs an equilateral trian-
gle:

To construct an equilateral triangle on a given finite straight line.

Our formal statement of Proposition 1 supposes that a#b is the given (non-
degenerate) “finite straight line.” We include an extra assertion requiring the
construction of a non-degenerate equilateral triangle, with an apex that lies to
the left of ab.
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Proposition 1.

∀a :Point. ∀b :{Point | b#a}. ∃c :{Point | Cong3(a, b, c) ∧ c left of ab}

where
Cong3(a, b, c) = ab ∼= bc ∧ bc ∼= ca ∧ ca ∼= ab.

We easily prove Proposition 1 as Euclid does by using the Compass-Compass
(CC) Postulate with circles Circle(a, b) and Circle(b, a). This constructs two
equilateral triangles, and we take the one where c left of ab.

Our Nuprl extract reflects the simplicity of the construction:

λa.λb. CCL(a, b, b, a).

So we can define
4(a, b) = CCL(a, b, b, a)

as the program for Euclid’s proposition 1, where CCL is the Compass-Compass
left constructor from Section ??. See Figure 4.

a b

Circle(a, b) Circle(b, a)

CCL(a, b, b, a)

Figure 4: Proposition 1.

5.4 Concluding Remarks

We have introduced evidence semantics as a way to express geometric construc-
tions problems from the Elements. Both geometric construction problems and
programming problems require the construction of a (computable) function that
transforms an object of the input type into an object of the output type that
satisfies some property [1]. Thus, the semantics introduced here are generally
suitable for expressing constructions.

References
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