9.2 Useful formulas

summations
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The summation zll grows as Inn. _lim(z_l— ln(n)j =y where ¥ =0.5772 is Euler’s
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constant. Thus zl = In(n) + y for large n.
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exponentials and logs
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Setting x=1 in € =1+ X+%+%+-- yields Z_—'ze.
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The above expression with —x substituted for x gives rise to the approximations
In(1-x)<-x and In(1—X)>-X—X> 0<x<0.69. The function f =In(1-X)+ X+ X’ goes

from 0 to minus infinite as x goes from 1 to 0. It thus crosses zero at least once. The
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goes from minus infinity to 0 as x goes from 1 to 0. Thus f

. -1
derivative, ——+1+X=
1-X

has at most one zero in the region and it is for x>0.69.
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Miscellaneous
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(1 - x)H >e 2 usedin Karp
n(n—l)r-]l;-(n—k) =O(1)e’5*2n See Palmer p129-130.

Proof that L<l for 6>0. Let f (5)=ln%
(146 )M (1+0)

f '(5 ) = —ln(l +0 ) is negative for 6 >0. Thus f (5 ) is monotonically decreasing and

g

f(0)=0. Thus f (&5)<0 for 6>0. Hence —=—<1 for 6>0.
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=5—(1+6)In(1+5). Now
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Answer: (1 ——j =e
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Exercise: e * has value 1 at x=0 and drops off very fast as x increases. Suppose we

wished to approximate e by a function f(x) where

f(x)={1 X <a

0 |¥>a
What value of a should we use? What is the integral of the error between f(x) and e7?

Solution: .[ e ~dx=~/27 . Thus if we select a= 1+/27 or approximately 1.25 we will
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have I f (x)dx= J27 . The error will be 4 j e‘%dx: 4(0.1056)=0.42 out of an
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area of V27 = 2.5 or 17%. [ |



trigonometric identities
sin(Xt y) = sin(X) cos(y) £ cos(X)sin(y)
cos(X =t y) = cos(X) cos(y)F sin(X)sin('y)

cos(26)=cos’ @ —sin’ @ =1-2sin" §
sin(26) =2sinfcos 6
sin? £ =1(1-cos6)
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cos’ g= %(1+cos (9)

integrals
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To verify take derivatives with respect to 4.
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binomial coefficients
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The number of ways of choosing k items from 2n equals the number of ways of choosing

1 items from the first n and choosing k-i items from the second n summed over all i,
0<i<k.
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Alternatively equate the coefficient of X in (1+x)" (1+x)" =(1+ X)2n .
Setting k=n
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More generally Z[ IJ[EZ j = U:l ZJ for the same reason as above.
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Stirling approximation
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inserted material
N\ Y 1 _(?‘k)z
[ J[—j (—) = e "2 isan excellent approximation. Develop how

k)\ 2 2 \Jn/2

approximation was derived. Needed in Sec 1.1 Chapter 1 see also Central Limit Theorem

inequalities

triangle inequality

X+ <% [+

Cauchy-Schwartz inequality
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In vector form |x||y| > |x||y|cos@ = X"y

Chebyshev sum inequality
If x,y, 20, 1<i<n then
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Setting X =Y, gives the form

n n 2
) x = (Z X j
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The above formula can be derived by generalizing the following technique.

(% =%)"20. Thus X+ >2xX, . Hence (X +%) =X +2x%, +X <25 +2%.

Jensen’s inequality
For convex function f f (x )+ f (x,)>2f (Lz"Z) :




More generally for any convex function f, Z“i f ()g ) > f (Zai X ) where 0<¢; <1 and
n o, =1. It follows that E( f (X)) > f (E(X))
=1

Example: Let f(x)=X. Then (X +X; +-++ X3 ) < (X +X, +++-+X,)" for X 20 and
E(x) < {E(x").
Example: Since f(x)= X" is convex (X +%,)" < +x. When 4 =1,

f (FZ X } < %Z f (X ). Jensen’s inequality is derived from this and says that
i i=l
E(f (0)= 1 (EG0).



