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1 Randomized Approximation Algorithms

Randomized techniques give rise to some of the simplest and most elegant approximation algo-
rithms. This section gives several examples.

1.1 A Randomized 2-Approximation for Max-Cut

In the max-cut problem, one is given an undirected graph G = (V,E) and a positive weight we
for each edge, and one must output a partition of V into two subsets A,B so as to maximize the
combined weight of the edges having one endpoint in A and the other in B.

We will analyze the following extremely simple randomized algorithm: assign each vertex at
random to A to B with equal probability, such that the random decisions for the different vertices
are mutually independent. Let E(A,B) denote the (random) set of edges with one endpoint in
A and the other endpoint in B. The expected weight of our cut is

E

 ∑
e∈E(A,B)

we

 =
∑
e∈E

we · Pr(e ∈ E(A,B)) =
1

2

∑
e∈E

we.

Since the combined weight of all edges in the graph is an obvious upper bound on the weight of
any cut, this shows that the expected weight of the cut produced by our algorithm is at least
half the weight of the maximum cut.

1.1.1 Derandomization using pairwise independent hashing

In analyzing the expected weight of the cut defined by our randomized algorithm, we never
really used the full power of our assumption that the random decisions for the different vertices
are mutually independent. The only property we needed was that for each pair of vertices u, v,
the probability that u and v make different decisions is exactly 1

2
. It turns out that one can

achieve this property using only k = dlog2(n)e independent random coin tosses, rather than n
independent random coin tosses.

Let F2 denote the field {0, 1} under the operations of addition and multiplication modulo 2.
Assign to each vertex v a distinct vector x(v) in the vector space Fk2; our choice of k = dlog2(n)e
ensures that the vector space contains enough elements to assign a distinct one to each vertex.
Now let r be a uniformly random vector in Fk2, and partition the vertex set V into the subsets

Ar = {v | r · x(v) = 0}
Br = {v | r · x(v) = 1}.

For any edge e = (u, v), the probability that e ∈ E(Ar, Br) is equal to the probability that
r · (x(v)− x(u)) is nonzero. For any fixed nonzero vector w ∈ Fk2, we have Pr(r · w 6= 0) = 1

2

because the set of r satisfying r · w = 0 is a linear subspace of Fk2 of dimension k − 1, hence
exactly 2k−1 of the 2k possible vectors r have zero dot product with w and the other 2k−1 of



them have nonzero dot product with w. Thus, if we sample r ∈ Fk2 uniformly at random, the
expected weight of the cut defined by (Ar, Br) is at least half the weight of the maximum cut.

The vector space Fk2 has only 2k = O(n) vectors in it, which suggests a deterministic alter-
native to our randomized algorithm. Instead of choosing r at random, we compute the weight
of the cut (Ar, Br) for every r ∈ Fk2 and take the one with maximum weight. This is at least as
good as choosing r at random, so we get a deterministic 2-approximation algorithm at the cost
of increasing the running time by a factor of O(n).

1.1.2 Derandomization using conditional expectations

A different approach for converting randomization approximation algorithms into deterministic
ones is the method of conditional expectations. In this technique, rather than making all of
our random decisions simultaneously, we make them sequentially. Then, instead of making the
decisions by choosing randomly between two alternatives, we evaluate both alternatives according
to the conditional expectation of the objective function if we fix the decision (and all preceding
ones) but make the remaining ones at random. Then we choose the alternative that optimizes
this conditional expectation.

To apply this technique to the randomized max-cut algorithm, we imagine maintaining a
partition of the vertex set into three sets A,B,C while the algorithm is running. Sets A,B are
the two pieces of the partition we are constructing. Set C contains all the vertices that have
not yet been assigned. Initially C = V and A = B = ∅. When the algorithm terminates C will
be empty. At an intermediate stage when we have constructed a partial partition (A,B) but C
contains some unassigned vertices, we can imagine assigning each element of C randomly to A
or B with equal probability, independently of the other elements of C. If we were to do this, the
expected weight of the random cut produced by this procedure would be

w(A,B,C) =
∑

e∈E(A,B)
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1
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This suggests the following deterministic algorithm that considers vertices one by one, assigning
them to either A or B using the function w(A,B,C) to guide its decisions.

Algorithm 1 Derandomized max-cut algorithm using method of conditional expectations

1: Initialize A = B = ∅, C = V .
2: for all v ∈ V do
3: Compute w(A+ v,B,C − v) and w(A,B + v, C − v).
4: if w(A+ v,B,C − v) > w(A,B + v, C − v) then
5: A = A+ v
6: else
7: B = B + v
8: end if
9: C = C − v
10: end for
11: return A,B

The analysis of the algorithm is based on the simple observation that for every partition of
V into three sets A,B,C and every v ∈ C, we have

1

2
w(A+ v,B,C − v) +

1

2
w(A,B + v, C − v) = w(A,B,C).



Consequently

max{w(A+ v,B,C − v), w(A,B + v, C − v)} ≥ w(A,B,C)

so the value of w(A,B,C) never decreases during the execution of the algorithm. Initially the
value of w(A,B,C) is equal to 1

2

∑
e∈E we, whereas when the algorithm terminates the value

of w(A,B,C) is equal to
∑

e∈E(A,B)we. We have thus proven that the algorithm computes a

partition (A,B) such that the weight of the cut is at least half the combined weight of all edges
in the graph.

Before concluding our discussion of this algorithm, it’s worth noting that the algorithm can
be simplified by observing that

w(A+ v,B,C − v)− w(A,B + v, C − v) =
1

2

∑
e∈E(B,v)

we −
1

2

∑
e∈E(A,v)

we.

The algorithm runs faster if we skip the step of actually computing w(A+ v,B,C− v) and jump
straight to computing their difference. This also means that there’s no need to explicitly keep
track of the vertex set C.

Algorithm 2 Derandomized max-cut algorithm using method of conditional expectations

1: Initialize A = B = ∅.
2: for all v ∈ V do
3: if

∑
e∈E(B,v)we −

∑
e∈E(A,v)we > 0 then

4: A = A+ v
5: else
6: B = B + v
7: end if
8: end for
9: return A,B

This version of the algorithm runs in linear time: the amount of time spent on the loop
iteration that processes vertex v is proportional to the length of the adjacency list of that vertex.
It’s also easy to prove that the algorithm has approximation factor 2 without resorting to any
discussion of random variables and their conditional expectations. One simply observes that the
property ∑

e∈E(A,B)

we ≥
∑

e∈E(A,A)

we +
∑

e∈E(B,B)

we

is a loop invariant of the algorithm. The fact that this property holds at termination implies
that

∑
e∈E(A,B)we ≥

1
2

∑
e∈E we and hence the algorithm’s approximation factor is 2.

1.1.3 Epilogue: Semidefinite programming

For many years, it was not known whether any polynomial-time approximation algorithm for
max-cut could achieve an approximation factor better than 2. Then in 1994, Michel Goemans
and David Williamson discovered an algorithm with approximation factor roughly 1.14, based on
a technique called semidefinite programming that is a generalization of linear program. Semidefi-
nite programming is beyond the scope of these notes, but it has become one of the most powerful
and versatile techniques in the modern theory of approximation algorithm design.



1.2 A Randomized 2-Approximation for Vertex Cover

For the unweighted vertex cover problem (the special case of weighted vertex cover in which
wv = 1 for all v) the following incredibly simple algorithm is a randomized 2-approximation.

Algorithm 3 Randomized approximation algorithm for unweighted vertex cover

1: Initialize S = ∅.
2: for all e = (u, v) ∈ E do
3: if neither u nor v belongs to S then
4: Randomly choose u or v with equal probability.
5: Add the chosen vertex into S.
6: end if
7: end for
8: return S

Clearly, the algorithm runs in linear time and always outputs a vertex cover. To analyze its
approximation ratio, as usual, we define an appropriate loop invariant. Let OPT denote any
vertex cover of minimum cardinality. Let Si denote the contents of the set S after completing
the ith iteration of the loop. We claim that for all i,

E[|Si ∩OPT|] ≥ E[|Si \OPT|]. (1)

The proof is by induction on i. In a loop iteration in which e = (u, v) is already covered by Si−1,
we have Si = Si−1 so (1) clearly holds. In a loop iteration in which e = (u, v) is not yet covered,
we know that at least one of u, v belongs to OPT. Thus, the left side of (1) has probability at
least 1/2 of increasing by 1, while the right side of (1) has probability at most 1/2 of increasing
by 1. This completes the proof of the induction step.

Consequently, letting S denote the random vertex cover generated by the algorithm, we have
E[|S ∩OPT|] ≥ E[|S \OPT|] from which it easily follows that E[|S|] ≤ 2 · |OPT|.

The same algorithm design and analysis technique can be applied to weighted vertex cover.
In that case, we choose a random endpoint of an uncovered edge (u, v) with probability inversely
proportional to the weight of that endpoint.

Algorithm 4 Randomized approximation algorithm for weighted vertex cover

1: Initialize S = ∅.
2: for all e = (u, v) ∈ E do
3: if neither u nor v belongs to S then
4: Randomly choose u with probability wv

wu+wv
and v with probability wu

wu+wv
.

5: Add the chosen vertex into S.
6: end if
7: end for
8: return S

The loop invariant is

E

[ ∑
v∈Si∩OPT

wv

]
≥ E

 ∑
v∈Si\OPT

wv

 .
In a loop iteration when (u, v) is uncovered, the expected increase in the left side is at least
wuwv

wu+wv
whereas the expected increase in the right side is at most wuwv

wu+wv
.



2 Linear Programming with Randomized Rounding

Linear programming and randomization turn out to be a very powerful when used in combination.
We will illustrate this by presenting an algorithm of Raghavan and Thompson for a problem of
routing paths in a network to minimize congestion. The analysis of the algorithm depends on the
Chernoff bound, a fact from probability theory that is one of the most useful tools for analyzing
randomized algorithms.

2.1 The Chernoff bound

The Chernoff bound is a very useful theorem concerning the sum of a large number of independent
random variables. Roughly speaking, it asserts that for any fixed β > 1, the probability of the
sum exceeding its expected value by a factor greater than β tends to zero exponentially fast as
the expected sum tends to infinity.

Theorem 1. Let X1, . . . , Xn be independent random variables taking values in [0, 1], let X denote
their sum, and let µ = E [X]. For every β > 1,

Pr (X ≥ βµ) < e−µ[β ln(β)−(β−1)]. (2)

Proof. The key idea in the proof is to make use of the moment-generating function of X, defined
to be the following function of a real-valued parameter t:

MX(t) = E
[
etX
]
.

From the independence of X1, . . . , Xn, we derive:

MX(t) = E
[
etX1etX2 · · · etXn

]
=

n∏
i=1

E
[
etXi

]
. (3)

To bound each term of the product, we reason as follows. Let Yi be a {0, 1}-valued random
variable whose distribution, conditional on the value of Xi, satisfies Pr(Yi = 1 | Xi) = Xi. Then
for each x ∈ [0, 1] we have

E
[
etYi
∣∣Xi = x

]
= xet + (1− x)e0 ≥ etx = E

[
etXi

∣∣Xi = x
]
,

where the inequality in the middle of the line uses the fact that etx is a convex function. Since
this inequality holds for every value of x, we can integrate over x to remove the conditioning,
obtaining

E
[
etYi
]
≥ E

[
etXi

]
.

Letting µi denote E[Xi] = Pr(Yi = 1) we find that[
etXi

]
≤
[
etYi
]

= µie
t + (1− µi) = 1 + µi(e

t − 1) ≤ exp
(
µi(e

t − 1)
)
,

where exp(x) denotes ex, and the last inequality holds because 1 + x ≤ exp(x) for all x. Now
substituting this upper bound back into (3) we find that

E
[
etX
]
≤

n∏
i=1

exp
(
µi(e

t − 1)
)

= exp
(
µ(et − 1)

)
.



On the other hand, since etX is positive for all t,X, we have E
[
etX
]
≥ etβµ Pr(X ≥ βµ), hence

Pr(X ≥ βµ) ≤ exp
(
µ(et − 1− βt)

)
.

We are free to choose t > 0 so as to minimize the right side of this inequality. The minimum is
attained when t = ln β, which yields the inequality specified in the statement of the theorem.

Corollary 2. Suppose X1, . . . , Xk are independent random variables taking values in [0, 1], such
that E[X1 + · · · + Xk] ≤ 1. Then for any N > 2 and any b ≥ 3 logN

log logN
, where log denotes the

base-2 logarithm, we have

Pr(X1 + · · ·+Xk ≥ b) <
1

N
. (4)

Proof. Let µ = E[X1 + · · ·+Xk] and β = b/µ. Applying Theorem 1 we find that

Pr(X1 + · · ·+Xk ≥ b) ≤ exp (−µβ ln(β) + µβ − µ)

= exp (−b(ln(β)− 1)− µ) ≤ e−b(ln(β/e)). (5)

Now, β = b/µ ≥ b, so
β

e
≥ b

e
≥ 3 logN

e log logN

and

b ln

(
β

e

)
≥
(

3 lnN

ln(logN)

)
· ln
(

3 logN

e log logN

)
= 3 ln(N) ·

(
1− ln(log logN)− ln(3) + 1

ln(logN)

)
> ln(N), (6)

where the last inequality holds because one can verify that ln(log x)− ln(3) + 1 < 2
3

ln(x) for all
x > 1 using basic calculus. Now, exponentiating both sides of (6) and combining with (5) we
obtain the bound Pr(X1 + · · ·+Xk ≥ b) < 1/N , as claimed.

2.2 An approximation algorithm for congestion minimization

We will design an approximation algorithm for the following optimization problem. The input
consists of a directed graph G = (V,E) with positive integer edge capacities ce, and a set of
source-sink pairs (si, ti), i = 1, . . . , k, where each (si, ti) is a pair of vertices such that G contains
at least one path from si to ti. The algorithm must output a list of paths P1, . . . , Pk such that Pi
is a path from si to ti. The load on edge e, denoted by `e, is defined to be the number of paths
Pi that traverse edge e. The congestion of edge e is the ratio `e/ce, and the algorithm’s objective
is to minimize congestion, i.e. minimize the value of maxe∈E (`e/ce). This problem turns out to
be NP-hard, although we will not prove that fact here.

The first step in designing our approximation algorithm is to come up with a linear program-
ming relaxation. To do so, we define a decision variable xi,e for each i = 1, . . . , k and each e ∈ E,
denoting whether or not e belongs to Pi, and we allow this variable to take fractional values.
The resulting linear program can be written as follows, using δ+(v) to denote the set of edges



leaving v and δ−(v) to denote the set of edges entering v.

min r

s.t.
∑

e∈δ+(v) xi,e −
∑

e∈δ−(v) xi,e =


1 if v = si

−1 if v = ti

0 if v 6= si, ti

∀i = 1, . . . , k, v ∈ V

∑k
i=1 xi,e ≤ ce · r ∀e ∈ E

xi,e ≥ 0 ∀i = 1, . . . , k, e ∈ E

(7)

When (xi,e) is a {0, 1}-valued vector obtained from a collection of paths P1, . . . , Pk by setting
xi,e = 1 for all e ∈ Pi, the first constraint ensures that Pi is a path from si to ti while the second
one ensures that the congestion of each edge is bounded above by r.

Our approximation algorithm solves the linear program (7), does some postprocessing of
the solution to obtain a probability distribution over paths for each terminal pair (si, ti), and
then outputs an independent random sample from each of these distributions. To describe
the postprocessing step, it helps to observe that the first LP constraint says that for every
i ∈ {1, . . . , k}, the values xi,e define a network flow of value 1 from si to ti. Define a flow to be
acyclic if there is no directed cycle C with a positive amount of flow on each edge of C. The
first step of the postprocessing is to make the flow (xi,e) acyclic, for each i. If there is an index
i ∈ {1, . . . , k} and a directed cycle C such that xi,e > 0 for every edge e ∈ C, then we can let
δ = min{xi,e | e ∈ C} and we can modify xi,e to xi,e − δ for every e ∈ C. This modified solution
still satisfies all of the LP constraints, and has strictly fewer variables xi,e taking nonzero values.
After finitely many such modifications, we must arrive at a solution in which each of the flow
(xi,e), 1 ≤ i ≤ k is acyclic. Since this modified solution is also an optimal solution of the linear
program, we may assume without loss of generality that in our original solution (xi,e) the flow
was acyclic for each i.

Next, for each i ∈ {1, . . . , k} we take the acyclic flow (xi,e) and represent it as a probability
distribution over paths from si to ti, i.e. a set of ordered pairs (P, πP ) such that P is a path from
si to ti, πP is a positive number interpreted as the probability of sampling P , and the sum of the
probabilities πP over all paths P is equal to 1. The distribution can be constructed using the
following algorithm.

Algorithm 5 Postprocessing algorithm to construct path distribution

1: Given: Source si, sink ti, acyclic flow xi,e of value 1 from si to ti.
2: Initialize Di = ∅.
3: while there is a path P from si to ti such that xi,e > 0 for all e ∈ P do
4: πP = min{xi,e | e ∈ P}
5: Di = Di ∪ {(P, πP )}.
6: for all e ∈ P do
7: xi,e = xi,e − πP
8: end for
9: end while
10: return Di

Each iteration of the while loop strictly reduces the number of edges with xi,e > 0, hence the
algorithm must terminate after selecting at most m paths. When it terminates, the flow (xi,e)



has value zero (as otherwise there would be a path from si to ti with positive flow on each edge)
and it is acyclic because (xi,e) was initially acyclic and we never put a nonzero amount of flow
on an edge whose flow was initially zero. The only acyclic flow of value zero is the zero flow, so
when the algorithm terminates we must have xi,e = 0 for all e.

Each time we selected a path P , we decreased the value of the flow by exactly πP . The value
was initially 1 and finally 0, so the sum of πP over all paths P is exactly 1 as required. For any
given edge e, the value xi,e decreased by exactly πP each time we selected a path P containing
e, hence the combined probability of all paths containing e is exactly xi,e.

Performing the postprocessing algorithm 5 for each i, we obtain probability distributions
D1, . . . ,Dk over paths from si to ti, with the property that the probability of a random sample
from Di traversing edge e is equal to xi,e. Now we draw one independent random sample from
each of these k distributions and output the resulting k-tuple of paths, P1, . . . , Pk. We claim that
with probability at least 1/2, the parameter maxe∈E {`e/ce} is at most αr, where α = 3 log(2m)

log log(2m)
.

This follows by a direct application of Corollary 2 of the Chernoff bound. For any given edge e,
we can define independent random variables X1, . . . , Xk by specifying that

Xi =

{
(ce · r)−1 if e ∈ Pi
0 otherwise.

These are independent and the expectation of their sum is
∑k

i=1 xi,e/(ce · r), which is at most 1
because of the second LP constraint above. Applying Corollary 2 with N = 2m, we find that the
probability of X1 + · · ·+Xk exceeding α is at most 1/(2m). Since X1 + · · ·Xk = `e(ce · r)−1, this
means that the probability of `e/ce exceeding αr is at most 1/(2m). Summing the probabilities
of these failure events for each of the m edges of the graph, we find that with probability at least
1/2, none of the failure events occur and maxe∈E {`e/ce} is bounded above by αr. Now, r is a
lower bound on the parameter maxe∈E {`e/ce} for any k-tuple of paths with the specified source-
sink pairs, since any such k-tuple defines a valid LP solution and r is the optimum value of the
LP. Consequently, our randomized algorithm achieves approximation factor α with probability
at least 1/2.


