
CS 482 Summer 2004
Proof Techniques: Greedy Stays Ahead

Main Steps

The 5 main steps for a greedy stays ahead proof are as follows:

Step 1: Define your solutions. Tell us what form your greedy solution takes, and
what form some other solution takes (possibly the optimal solution). For exam-
ple, let A be the solution constructed by the greedy algorithm, and let O be a
(possibly optimal) solution.

Step 2: Find a measure. Find a measure by which greedy stays ahead of the other
solution you chose to compare with. Let a1, . . . , ak be the first k measures of the
greedy algorithm, and let o1, . . . , om be the first m measures of the other solution
(m = k sometimes).

Step 3: Prove greedy stays ahead. Show that the partial solutions constructed
by greedy are always just as good as the initial segments of your other solution,
based on the measure you selected.

• for all indices r ≤ k, prove by induction that f(a1, . . . , ar)(≥,≤)f(o1, . . . , or),
where f is some function on the 1st r measures. Don’t forget to use your
algorithm to help you argue the inductive step.

Step 4: Prove optimality. Prove that since greedy stays ahead of the other solution
with respect to the measure you selected, then it is optimal.

Comments

• The tricky part is finding the right measure; greedy won’t necessarily stay ahead
in just any measure.

• Make sure your measure guarantees greedy is optimal, i.e. if greedy stays ahead
with respect to this measure, how does it guarantee your greedy solution is
optimal?

1



Example: Interval Scheduling

Suppose you have a set of n requests {1, 2, . . . , n}, each with a desired start and
finish time pair (si, fi). We determine a schedule with the maximum number of non-
overlapping (compatible) requests by repeatedly selecting the remaining request with
the earliest finish time, and removing all conflicting requests from the set. We will
prove this returns an optimal solution.

Let A = {i1, . . . , ik} be the set of requests selected by our greedy algorithm, in the
order in which they were added. Let O = {j1, . . . , jm} be the requests selected by an
optimal solution, ordered by their finish times.

We will compare A and O by their jobs’ finish times, i.e. we will show that for all
r ≤ k, fir ≤ fjr

.

This can be shown by induction. As the base case, we take r = 1. Since we selected
the job with the earliest finish time, it certainly must be the case that fi1 ≤ fj1.

For t > 1, assume the statement is true for t − 1 and we will prove it for t. The
induction hypothesis states that fit−1

≤ fjt−1
, and so any jobs that are valid to add

to the optimal solution are certainly valid to add to our greedy solution. Therefore, it
must be the case that fit ≤ fjt

.

So we have that for all r ≤ k, fir ≤ fjr
. In particular, fik ≤ fjk

. If A is not optimal,
then it must be the case that m > k, and so there is a job fjk+1

in O that is not in A.
This job must start after O’s kth job finishes at fjk

, and hence after fik . But then this
job would have been compatible with all the jobs in A, and so A would have added it
during the greedy algorithm, a contradiction.

2


