Mathematical Foundations of Machine Learning (CS 4783/5783)

Lecture 21: Differential Privacy

1 Differential Privacy

Differential Privacy is a strong notion of privacy for an algorithm that ensures that we cannot
detect if one entry of a dataset is replaced. Specifically, let A be a randomized algorithm that takes
as input a sample S = {(z1,v1), ..., (Zn, yn)} and outputs A(S) in some arbitrary outcome space.

Definition 1. We say that A is (e, ) differentially private if for any sample S and sample S’ that
differ on at most one data point, and for any set C over the space of outcomes,

P(A(S) € C) < e“P(A(S') € C) + 6

Note that since S and S’ differ on at most one data point, the above definition tells us that
both
P(A(S) e C) <eP(A(S) e C)+6

and that
P(A(S) € C) < e P(A(S) € C)+ 6

Specifically, as € and ¢ are taken to be very small this says P(A(S) € C) and P(A(S") € C) are
very close and so we cant distinguish if we have run our method on S or S’.

2 The Laplace Mechanism

Say we want a differentially private version of a real valued function f on a given sample S. One
way to obtain such a version is to first evaluate f on a given sample S then add noise to it to
guarantee differential privacy. Specifically, say we want a differentially private version of function
f. In this case, let

M = max 1(8) — 1(5')

S,S" s.t. S’,S vary on one point

Now we could set M

AS) = F(8) + - X
where X is drawn from the Laplace distribution Laplace(0,1). That is, distribution with density
function

I
p(X) = 5¢ I

Lemma 1. Let u
AS)=f(S)+— X

€
where X ~ Laplace(07 1) and M = maxg s’ s.t. S',S vary on one point f(S) - f(S/) The algom'thm A
is (€,0) differentially private.



Proof. Since A(S) = f(S) + 2 X, we have that A(S) ~ Laplace(f(S), ). Hence, we have that
the probability density function of A(S) is given by

€ _elz—f(S)|
M

pas)(z) = T

Similarly, the density function for A(S’) for any S’ that differs from S on at most one point if given
by

€ _cla—f(sN)]
pA(s')(x) = me M
Hence,
P (x) 6_76|zg]{1(5)|
AS) — eair (3= =lz=F(S)) < (37 1F(S)=F(S)] < (e

- elz—f(S’
pas(@) -l

Next note that for any set C', using the above,
P(A(S) € C) = /C pags)(@)dz < € /C pas(@)dz = ¢ P(A(S') € C)

Thus we have proved that the algorithm is (e, 0) differentially private. O

An example application is when S = {1, ..., z,} where each z; € [-1,1] and f(S) = L 37 | z;.
In this case note that if 8" = {x1,...,zi_1, 2}, ziy1,..., 2}, then,

S

F(8) = F(8") = ~(x; — 2l <

n

Hence M < % and so in this case, to make mean ¢, 0 differentially private, we need to add Laplace
noise of Laplace(0, 2)

7 en

2.1 The Multidimensional Laplace Mechanism

Say function F' now maps to a K-dimensional vector. The Laplace mechanism then easily extends
to this multi-dimensional setting as well. In this case, define

B = max ||F(S) - F(S/)Hl

S,S" s.t. §’,S vary on one point

Lemma 2. Let B
A(8) = F(8) + 2 (X1, Xk)

where X1, ..., Xk ~ Laplace(0, 1) are K Laplace distributed random variables. and B = maxg s st 5.9 vary on one g
F(S")||1. The algorithm A is (€,0) differentially private.

Proof. Since A(S) = F(S)+2 (X1,..., Xk), we have that for every i € [K], A(S)[i] ~ Laplace(F(S)[i], 2).
Hence, we have that the probability density function of A(S)[i] is given by

€ KK _ elali]=F(S)[i]|
pA(S)(fU): (@) He B

=1



Similarly, the density function for A(S’) for any S’ that differs from S on at most one point if given

by .
e \K _elali]—F(8)i]]|
pA(S/)(fU) = (@) He B

=1

Hence,

B FEI-FSl — o5 IF(S)-F(h ge < ¢

':jw

Il
—

K
Pas)(@) — [ e25 == FE Il -FS) D <
pacsn (@) i1

2

Next note that for any set C, using the above,

P(A(S) € C) = /CPA(S)(x)dx < 66/ pas)(x)dz = e“P(A(S) € C)

Q

Thus we have proved that the algorithm is (e, 0) differentially private. ]

An immediate question that one might have is how bad does the Laplace mechanism distort our
outcome. Specifically, recall that we want out procedure to output F'(S) in a differentially private
fashion. So we would hope that our algorithm A(S) returns a vector that is close to F(S). The
following lemma provides such a bound.

Lemma 3. For any F, the differentially private algorithm A obtained using Laplace mechanism
satisfies the following bound

P (17(5) - Al 2 108 () 2) <5

where B = maxg s’ s.t. S’,S vary on one point HF(S) - F(SI)HI

Proof. Let (X1,...,Xk) be K random variables each drawn from Laplace distribution. In this case

note that,
P (17(5) - A = 10s () B) = P (o 1031 = 105 () )

w100 = 1ox () %)

<K— =
<K =0

3 Some Properties

The first important property of differential privacy is that post processing preserves privacy. Say
algorithm A is (e, ) differentially private and say we apply a function g on outcome of algorithm
A and output g(A(S)). Such post processing preserves privacy.



Lemma 4. Let A be an (¢,0) differentially private algorithm. Let g be any function on the space of
outcomes of the algorithm A. Then, the algorithm B that computes B(S) = g(A(S)) is also (e, )
differentially private.

Proof. Consider any set C on the space of outcomes of algorithm B. Define the set
D={d:g(d) eC}

that is D is the set of entries such that g applied to an element in D returns an outcome in set C.
Note that,
P(B(S) e C)=P(g(A(S)) e C) = P(A(S) € D)

Now using the differential privacy of A, we have
P(B(S)e C)=P(A(S)e D) <eP(A(SYe D) +§
But if A(S’) € D, then g(A(S")) € C by definition of set D and so
P(B(S)eC)<ePA(S)eD)+d=eP(g(A(S") € C)+ 5 =eP(B(S)eC)+46

Thus we can conclude that B is ¢, d differentially private.
O

Lemma 5. Let Ay and Ay be two €1 and ey differentially private mechanisms. Then, A(S) =
(A1(S), A2(S)) is an €1 + €2 differentially private mechanism.

Proof. Below we do the proof assuming the outcome of the differentially private mechanism has a
density function. (for the discrete setting the proof can also be easily extended and can also be
extended more generally)

pasy(ci c2)  pay(s)(e1) X pay(s)(ea)

pasnlcr,ca)  paysy(c) X pay(ca)
_ pays)ler) y Pay(s)(ca)
C paysy(e) T pay(er)
< efl x f2 = efltez

4 Gaussian Mechanism

Lemma 6. Let
A(8) = F(8) + = (X, Xx)

where X1, ..., Xg ~ Normal(0,1) are K standard normal distributed random variables. and B =

Maxg s s.t. 5,8 vary on one point | F'(S) — F(S")|2. and the constant ¢ = /2log(1.25/0). Then the
algorithm A is (e,9) differentially private.



Proof. For now say we use variance o, we will later prove o = ¢B/e Note that,

pas(a) _ 5 K Ly (ali]—F(8") )2~ (alil - F(S)[i)?)
_ i (o= FE3- e (s 9)13)
_ otz (e F(S) B HIF(S)~ F(5")3+2(e—F(5)) T (F(S)~F(5)~ |a—F(S)]3)
_ iz (IFS)=F(S) [3+2(—F($) T (F(S)-F(5')
< eatz(B42le—F(S)]2B)

Now note that 51y (B + 2|z — F(S)|2B) < ¢ whenever,

o2e
|z — F(S)[]2 < B

o | oy

On the other hand, note that Py(g)(||x — F(S5)|l2 > %5° — 5) can be bounded using the fact that z
is gaussian distributed with mean F(S). Spemﬁcally for the setting of 0 = ¢B/e we can conclude
that

o’ B
P _F 7€ _Zy<
ws (e~ P> 25 T <
Thus we conclude that the mechanism is (¢, d) differentially private. O



