Mathematical Foundations of Machine Learning (CS 4783/5783)

Lecture 21: Differential Privacy

1 Differential Privacy

Differential Privacy is a strong notion of privacy for an algorithm that ensures that we cannot
detect if one entry of a dataset is replaced. Specifically, let A be a randomized algorithm that takes
as input a sample S = {(z1,v1), ..., (Zn, yn)} and outputs A(S) in some arbitrary outcome space.

Definition 1. We say that A is (e, ) differentially private if for any sample S and sample S’ that
differ on at most one data point, and for any set C over the space of outcomes,

P(A(S) € C) < e“P(A(S') € C) + 6

Note that since S and S’ differ on at most one data point, the above definition tells us that
both
P(A(S) e C) <eP(A(S) e C)+6

and that
P(A(S) € C) < e P(A(S) € C)+ 6

Specifically, as € and ¢ are taken to be very small this says P(A(S) € C) and P(A(S") € C) are
very close and so we cant distinguish if we have run our method on S or S’.

2 The Laplace Mechanism

Say we want a differentially private version of a real valued function f on a given sample S. One
way to obtain such a version is to first evaluate f on a given sample S then add noise to it to
guarantee differential privacy. Specifically, say we want a differentially private version of function
f. In this case, let

M = max 1(8) — 1(5')

S,S" s.t. S’,S vary on one point

Now we could set M

AS) = F(8) + - X
where X is drawn from the Laplace distribution Laplace(0,1). That is, distribution with density
function

I
p(X) = 5¢ I

Lemma 1. Let u
AS)=f(S)+— X

€
where X ~ Laplace(07 1) and M = maxg s’ s.t. S',S vary on one point f(S) - f(S/) The algom'thm A
is (€,0) differentially private.



Proof. Since A(S) = f(S) + 2 X, we have that A(S) ~ Laplace(f(S), ). Hence, we have that
the probability density function of A(S) is given by

€ _elz=f(S)]
M

pas)(T) = Y

Similarly, the density function for A(S’) for any S’ that differs from S on at most one point if given
by

€ _ele—f(SI
pa(s(T) = Y M
Hence,
pacs) () o~ A5
A(S) - — eanr ([Z=f(S)=le=f(S)) < o lf()=F(S)] < e

Pasn (@) -zl

Next note that for any set C, using the above,

P(4(S) € C) = [ pas (@) < [ pas (@) = < PA(S) €C)

Thus we have proved that the algorithm is (e, 0) differentially private. O
An example application is when S = {z1,...,x,} where each z; € [-1,1] and f(S) = % > opy Tt
In this case note that if 8" = {z1,...,z;_1, 2}, xi41,...,2,}, then,
! 1 / 2
f(S)—f(S):ﬁ(ﬂfi—fEi) < n

Hence M < % and so in this case, to make mean ¢, 0 differentially private, we need to add Laplace
noise of Laplace(0, 2)

T en

3 Some Properties

The first important property of differential privacy is that post processing preserves privacy. Say
algorithm A is (e, d) differentially private and say we apply a function g on outcome of algorithm
A and output g(A(S)). Such post processing preserves privacy.

Lemma 2. Let A be an (e,0) differentially private algorithm. Let g be any function on the space of
outcomes of the algorithm A. Then, the algorithm B that computes B(S) = g(A(S)) is also (e, d)
differentially private.

Proof. Consider any set C' on the space of outcomes of algorithm B. Define the set
D =1{d:g(d) e C}

that is D is the set of entries such that g applied to an element in D returns an outcome in set C.
Note that,
P(B(S) e C)=P(g(A(S)) € C) = P(A(S) € D)

Now using the differential privacy of A, we have

P(B(S) € C) = P(A(S) € D) < eP(A(S') € D) +§



But if A(S’) € D, then g(A(S’)) € C by definition of set D and so
P(B(S) e C) <eP(A(S")e D)+ =e"P(g(A(S") € C)+ 6 =eP(B(S) € C)+6

Thus we can conclude that B is ¢, § differentially private.



