
Mathematical Foundations of Machine Learning (CS 4783/5783)

Lecture 17: Computational Complexity of Learning

1 Setup

So far we only looked at the statistical complexity or sample complexity of learning problems. We
did not pay attention to whether a problem is computationally efficiently learnable. In the next
couple lectures we will look into this question more carefully. To start with we will in fact just
focus on the realizable PAC setting. That is, where inout instances xt’s are drawn from a fixed
distribution and yt = f∗(xt) for some f∗ ∈ F and F is a binary model class. First notice that
computational complexity is at least as large as sample complexity because we would at least need
to read in the minimum required samples. To be more precise, say we can represent the input
instances xt’s using m bits, then minimum computation time for learning will be m times the
sample complexity since we need to read as many samples as sample complexity n(ε, δ) and each
instance is m bits long. To be precise, we can define a model class F to be efficiently PAC learnable
using the following definition.

Definition 1. A class of models F is efficiently PAC Learnable if there exists a learning algorithm
such that for any target model f∗ ∈ F and any distribution DX over instance space X and for any
δ, ε > 0, the algorithm returns a model f̂S s.t. with probability at least 1− δ over draw of samples

Px∼DX
(f̂S(x) 6= f∗(x)) ≤ ε

and the algorithm runs in time poly(1ε ,
1
δ ,m) where m is the instance length.

Basically to the PAC learnable definition we add the constraint that the learning algorithm has to
also run in polynomial time in the relevant parameters. A list of models we can learn efficiently (in
the realizable setting) are, half-spaces, conjugation of literals etc.

We will further say a problem is properly efficiently PAC learnable if the learning algorithm
returns the model f̂S ∈ F . That is the learning algorithm returns a model from the model class we
are considering (like ERM algorithm).
Say we were able to solve the optimization or search problem of finding f ∈ F s.t.

L̂S(f) =
1

|S|
∑

(x,y)∈S

1{f(x) 6= y} = 0

efficiently, that is in time poly(|S|,m), then it is clear that the problem is efficiently PAC learnable.
This is because in such a case we are able to compute the ERM efficiently. For efficient proper PAC
learning, it turns out the converse is also true. Given a model class F , the consistency problem
given a sample S = {(x1, y1), . . . , (xn, yn)} is the decision problem of computing CONSF (S) = 1 if
and only if ∃f ∈ F , s.t.L̂S(f) = 0. That is deciding if there is a model in the class F that makes 0
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training error (clearly this is easier than finding such a model if one exists). We will basically argue
that if for a class of models F , the learning problem is efficiently, properly PAC learnable,
then we will show that the consistency problem CONSF is in the class RP (problems that can be
solved in Randomized polynomial time). In other words, taking the converse, we will be claiming
that if for a model class we can show that CONSF is hard (say it belongs to NP class) then we
can prove that such problems are not efficiently properly PAC learnable (unless RP = NP which
we don’t believe is true).

Theorem 1. If a class of models F is efficiently properly PAC learnable, then CONSF ∈ RP,
that is, there exists a randomized algorithm C that runs in poly |S|,m time and is such that for
any input sample S:

• P (C(S) = 1|CONSF (S) = 1) ≥ 3/4

• P (C(S) = 0|CONSF (S) = 0) = 1

Proof Sketch. Given sample S, consider distribution D = Unif(S). Now if the problem is efficiently
properly PAC learnable, by our premise, there exists an algorithm, say A such that if we run
A(D, δ, ε), it will return a model in F that with probability at least 1 − δ has error smaller than
ε. Run this algorithm to get f̂ = A(Unif(S), 1/4, 1/2|S|). Check L̂S(f̂), if it is 0 output 1 and if
not output 0. Now note that if there is not model in F that achieves 0 error on S then clearly
we will output a 0 (since we only ever output 1 if we actually find a consistent model). On
the other hand, since ε = 1/2|S|, if CONSF (S) = 1, then with probability 1 − δ = 3/4 we will
have that L̂S(f̂) < 1/2|S|. But since its a binary classification problem, this would mean that in
fact L̂S(f̂) = 0 and so with probability 3/4 we do actually output a 1. Clearly running time is
polynomial in m|S|

2 Properly Learning 3-TERM-DNF is Hard

We will prove hardness of properly learning 3-TERM-DNF model classes. Say X = {0, 1}m is the
m bit representation of our inputs. Say F = {T1 ∧ T2 ∧ T3 : Ti ∈ Conjm}. That is, each f ∈ F is of
the form

f(x) = (x[1] ∧ ¬x[4] ∧ x[i] ∧ ¬x[m]) ∨ (x[2] ∧ ¬x[3] ∧ x[6]) ∨ (x[20] ∧ ¬x[7])

First note that |F| = 3O(m) and so VC(F) = O(m). Hence sample complexity if O(m log(1/δ)/ε).
However, we will show that for 3-TERM-DNF, the CONSF problem is NP hard! We will do this
by showing that the notoriously hard problem of three coloring of a graph can be solved efficiently
if CONSF can be solved efficiently. That is we will provide an efficient reduction from graph
3-colorability.

To recall, the graph 3-colorability problem is one where given an undirected graph you are asked
to decide it you can color its vertices with 3 colors in such a way that no 2 neighbors have the
same color. 2-coloring is easy but it turns out that 3-coloring is hard, it is one of the NP complete
problems which we reasonably expect to be very hard. If we prove a problem is NP hard, then
unless P = NP (which we really dont believe is the case), the problem will not be solvable in poly
time.
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Claim 2. Let F represent the 3-TERM-DNF model class, the problem CONSF is NP hard.

Proof Sketch. Given a graph G = (V,E), consider the following mapping to sample SG such that
|SG| = |V |+ |E| given as follows:

SG = {(1− ei, 1) : i ∈ [V ]} ∪ {(1− ei − ej , 0) : (i, j) ∈ E}

That is x’s are |V | dimensional binary vectors describes as above and corresponding labels are 0 or
1 as described above. Now we claim that the reduction is simple: If there exists a 3 coloring say c
for the graph then, if we define Tk = ∧c(i)6=kx[i] for each k ∈ [3], then SG is satisfied by the model
T1 ∨ T2 ∨ T3. On the other hand, if T1 ∨ T2 ∨ T3 satisfies SG, then if we set for each vertex i the
color c(i) = min{k ∈ [3] : Tk satisfies (1− ei, 1)}

From the above results we can conclude that If NP 6= RP, then 3-Term-DNF model class is not
efficiently properly PAC learnable.
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