
Mathematical Foundations of Machine Learning(CS 4783/5783)

Lecture 11: Online Learning, Exponential Weights Algorithm

1 Mind Reading Machine

Most of you guys would have played games like Rock-Paper-Scissors and Matching-Pennies while
growing up. The excitement of these games is in trying to predict the future — the next choice of
the opponent. Of course, if opponent is random, there is no good strategy, and the game becomes
boring. This boring strategy is in fact minimax optimal. However, it is the subtle cues from the
other player and their past behavior that make the game interesting. Does the opponent tend to
play “Rock” after losing with “Scissors”?, do they try to play more heads than tails?, does the
opponent tend to stick with the same choice after winning a round? We try to notice such patterns
in behavior to tip the balance in our favor.

Can we program a computer to beat humans at these games? sThis question was asked by
Claude Shannon and David Hagelbarger in the 1950’s. While at AT&T Bell Labs, they each built a
machine—aptly called “mind reader”—to play the game of Matching-Pennies, According to various
accounts, the machines were able to predict the sequence of heads/tails entered by an untrained
human markedly better than random guess, picking up on a variety of patterns of the past play.

Figure 1: Shannon’s Mind Reading Machine, MIT Museum. (Source: http://william-

poundstone.com/blog/2015/7/30/how-i-beat-the-mind-reading-machine)

Deviating from the standard approach of time-series analysis, we will (typically) place no prob-
abilistic assumptions on the mechanism generating the sequences. Then how does one make mean-
ingful predictions, or claim guarantees on how well our strategy is doing. To this end, we will
consider the objective called regret:

for any sequence,

number of mistakes made by forecaster ≤ number of mistakes made by

a benchmark model.

1

For the Penny-Matching game, a simple benchmark can just be do as well as majority of heads vs
tails, or more fine-grained statistics, such as predictability of the next outcome based on the last
three outcomes. In fact, Shannon’s mind reading machine was based on only 8 such states. Which
benchmark can one choose? How to develop an efficient algorithm for a given benchmark?

We can contrast the “individual sequence” approach described above with an approach based
on stochastic modeling. In the latter, for any sequence would be typically replaced with for

most sequences (or, with high probability). However, “for most” is calculated according to
the assumed probability model; if the assumption is violated, the result can become significantly
weaker. On the other hand, the individual sequence statements are naturally robust to model
misspecification. In the age of dynamic and streaming data with a large degree of intricate depen-
dencies, the individual sequence approach appears to be desirable. On the downside, the approach
presented in this paper is only focused on prediction rather than inference or estimation. Indeed,
estimation requires the assumption that the estimand is there. Our prediction goal, however, is not
based on a probabilistic model.

Let us continue with the example of penny matching game. What is a good strategy for the
player to beat/or not to loose badly against any opponent. Can we beat Shannon’s machine?

Does a strategy as simple as going with majority work, what about a randomized predictor that
just uses the frequency of heads or tails so far? What do you think?

2 Experts/Exponential Weights Algorithm

More formally and more generally, we will consider the supervised online learning setting where on
each round t from 1 to n, we are first provided the input xt and are asked to predict the outcome.
Our prediction for round t we will define as ft(xt) which we make by choosing model ft ∈ F .
Finally, at the end of the round the ture outcome yt is revealed. We are interested in minimizing
regret given by:

Regn :=
1

n

n∑
t=1

`(ft(xt), yt)−
1

n
min
f∈F

n∑
t=1

`(f(xt), yt)

For the penny matching game, xt could simply just be equal to t, the time index, we are only trying
to predict outcome yt ∈ {±1}. The loss `(ft(xt), yt) = 11{ft(t)6=yt}. Finally, the class of models F
could be as simple as F = {(1, . . . , 1), (−1, . . . ,−1)}, that is the model that either only goes with
heads or only goes with tails. First, we claim that diminishing regret against even this simple class
of models means that we are not going to loose too badly with any opponent. But the setting itself
goes well beyond penny matching problem or even classification problems.

We will provide an algorithm called exponential weights algorithm for this problem below with
bound on expected regret (expectation over randomness in the algorithm). The algorithm maintains
a distribution over models and on every round picks a random model according to this distribution.
This distribution of course favors model that has low cumulative loss so far.
Algorithm : q1(f) = 1/|F|. Further, each round we update the distribution over experts as,

qt+1(f) ∝ qt(f)e−η`(f(xt),yt)

Or in other words, qt+1(f) = e−η
∑t
i=1 `(f(xt),yt)∑

f∈F e
−η

∑t
i=1

`(f(xt),yt)

2

Claim 1.

E [Regn] ≤
√

2 log |F|
n

Proof. We use the notation Lt(f) =
∑t

i=1 `(f(xi), yi). DefineW0 = |F | and defineWt =
∑

f∈F e
−ηLt(f).

Note that

log

(
Wn

W0

)
= log

∑
f∈F

e−ηLn(f)

− log |F|

≥ log

(
max
f∈F

e−ηLn(f)
)
− log |F|

= −ηmin
f∈F

n∑
t=1

`(f(xt), yt)− log |F|

On the other hand,

log

(
Wn

W0

)
=

n∑
t=1

log

(
Wt

Wt−1

)
=

n∑
t=1

log

(∑
f∈F e

−ηLt(f)∑
f∈F e

−ηLt−1(f)

)

=
n∑
t=1

log

∑
f∈F

e−ηLt−1(f)∑
f∈F e

−ηLt−1(f)
e−η`(f(xt),yt)


=

n∑
t=1

log
(
Ef∼qt

[
e−η`(f(xt),yt)

])
=

n∑
t=1

log
(
Ef∼qt

[
e−η(`(f(xt),yt)−Ef∼qt [`(f(xt),yt)])−ηEf∼qt [`(f(xt),yt)]

])
=

n∑
t=1

log
(
Ef∼qt

[
e−η(`(f(xt),yt)−Ef∼qt [`(f(xt),yt)])

]
× e−ηEf∼qt [`(f(xt),yt)]

)
=

n∑
t=1

log
(
Ef∼qt

[
e−η(`(f(xt),yt)−Ef∼qt [`(f(xt),yt)])

])
− η

n∑
t=1

Ef∼qt [`(f(xt), yt)]

Thus we conclude that

n∑
t=1

Ef∼qt [`(f(xt), yt)]−min
f∈F

n∑
t=1

`(f(xt), yt) ≤
log |F|
η

+
1

η

n∑
t=1

log
(
Ef∼qt

[
e−η(`(f(xt),yt)−Ef∼qt [`(f(xt),yt)])

])
Note that for any zero mean RV X in the range [−1, 1], E

[
e−ηX

]
≤ eη2/2. Hence,

n∑
t=1

Ef∼qt [`(f(xt), yt)]−min
f∈F

n∑
t=1

`(f(xt), yt) ≤
log |F|
η

+
nη

2

Picking η =
√

2 log |F|/n concludes the statement. In fact, using concentration statement called
Hoeffding Azuma inequality, we can even conclude that the regret bound even hold with high
probability over randomization of the algorithm.

3

