
Mathematical Foundations of Machine Learning(CS 4783/5783)

Lecture 6: Properties of Rademacher Complexity, and Examples

1 Recap

1. For any δ > 0, with probability at least 1− δ,

LD(f̂ERM)−min
f∈F

LD(f) ≤ 2ES

[
Eε

[
max
f∈F

1

n

∣∣∣∣∣
n∑
t=1

εt`(f(xt), yt)

∣∣∣∣∣
]]

+O

(√
log(1/δ)

n

)

2. The term Eε
[
maxf∈F

1
n |
∑n

t=1 εt`(f(xt), yt)|
]

is referred to as Rademacher complexity on a
sample S. Further,

Eε

[
max
f∈F

1

n

∣∣∣∣∣
n∑
t=1

εt`(f(xt), yt)

∣∣∣∣∣
]

= Eε

[
max

f∈F|x1,...,xn

1

n

∣∣∣∣∣
n∑
t=1

εt`(f [t], yt)

∣∣∣∣∣
]
≤ O

(√
log |F|x1,...,xn |

n

)

2 Properties of Rademacher Complexity

Define empirical Rademacher complexity of a class G, a set of functions on Z, on a sample S =
{z1, . . . , zn} as

R̂S(G) :=
1

n
Eε

[
max
g∈G

∣∣∣∣∣
n∑
t=1

εtg(zt)

∣∣∣∣∣
]

In class we showed that LD(ŷerm)− inff∈F LD(f) ≤ 2 ES
[
R̂S(` ◦ F)

]
+O

(√
log(1/δ)

n

)
, where

` ◦ F = {(x, y) 7→ `(f(x), y) : f ∈ F}
We start with the following lemma called contraction lemma that is one of the most important

property of the Rademacher complexity. It basically tells us that if we consider Rademacher
complexity of a class functions got by taking a sequence of Lipschitz functions composed with
any class of functions. This Rademacher complexity can be upper bounded by the Radmeacher
complexity of the function class. That is the Lipschitz function can be removed. Before we begin,
let us recall, a function φ : R 7→ R is said to be an L-Lipschitz function if for any a, b ∈ R,

|φ(a)− φ(b)| ≤ L|a− b|

L is called the Lipschitz constant. The property basically says that as points get close by, the
function value at these points are also close.

Lemma 1. For any φ1, . . . , φn where each φi : R 7→ R and is L-Lipschitz, and any z1, . . . , zn, we
have,

1

n
Eε

[
max
g∈G

n∑
t=1

εtφt (g(zt))

]
≤ L

n
Eε

[
max
g∈G

n∑
t=1

εtg(zt)

]
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Remark: Give (x1, y1), . . . , (xn, yn), let us define φt(a) = `(a, yt). Now if the loss function is
L Lipschitz in its first argument, then it is clear that φt’s are Lipschitz and hence by the above
contraction lemma, we can remove the loss and only have Rademacher complexity of F . That is
R̂S(` ◦ F) ≤ L R̂S(F)

Proposition 2. For any sample S = {z1, . . . , zn} and any classes G,H ⊂ RZ :

1. If H ⊂ G, then R̂S(H) ≤ R̂S(G)

2. For any fixed function h : Z 7→ R, R̂S(G + h) = R̂S(G)

3. R̂S(cvx(G)) = R̂S(G)

Proof.

1. R̂S(H) = 1
nEε [maxg∈H |

∑n
t=1 εtg(zt)|] ≤ 1

nEε [maxg∈G |
∑n

t=1 εtg(zt)|] ≤ R̂S(G).

2. For any fixed function h bounded by 1,

R̂S(G + h) =
1

n
Eε

[
max
g∈G

∣∣∣∣∣
n∑
t=1

εt(g(zt) + h(zt))

∣∣∣∣∣
]

=
1

n
Eε

[
max
g∈G

∣∣∣∣∣
n∑
t=1

εtg(zt)

∣∣∣∣∣+

∣∣∣∣∣
n∑
t=1

εth(zt))

∣∣∣∣∣
]

=
1

n
Eε

[
max
g∈G

∣∣∣∣∣
n∑
t=1

εtg(zt)

∣∣∣∣∣
]

+
1

n
Eε

[∣∣∣∣∣
n∑
t=1

εth(zt))

∣∣∣∣∣
]

≤ R̂S(G) +O

(√
1

n

)

3. cvx(G) = {z 7→ Eg∼π [g(z)] : π ∈ ∆(G)}. That is, instead of only considering functions in G
we are allowed to also pick any distribution over G and consider the expected function under
the distribution.

R̂S(cvx(G)) =
1

n
Eε

[
max
π∈∆(G)

∣∣∣∣∣
n∑
t=1

εtEg∈π [g(zt)]

∣∣∣∣∣
]

=
1

n
Eε

[
max
π∈∆(G)

∣∣∣∣∣Eg∈π
[

n∑
t=1

εtg(zt)

]∣∣∣∣∣
]

≤ 1

n
Eε

[
max
π∈∆(G)

Eg∈π

[∣∣∣∣∣
n∑
t=1

εtg(zt)

∣∣∣∣∣
]]

=
1

n
Eε

[
max
g∈G

n∑
t=1

εtg(zt)

]
= R̂S(G)

However, we also have that G ⊆ cvx(G) and so from earlier shown property, R̂S(G) ≤
R̂S(cvx(G)) and so overall we have shown that

R̂S(G) = R̂S(cvx(G))
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3 Example : Rademacher complexity of linear function classes

1. L1 regularizer : Let FR = {x 7→ f>x : f ∈ Rd, ‖f‖1 ≤ R}, where ‖f‖1 =
∑d

i=1 |f [i]|. In this
case we have

R̂S(FR) =
1

n
Eε

[
max

f :‖f‖1≤R

∣∣∣∣∣
n∑
t=1

εtf
>xt

∣∣∣∣∣
]

=
R

n
Eε

[
max

f :‖f‖1≤1

∣∣∣∣∣
n∑
t=1

εtf
>xt

∣∣∣∣∣
]

= R R̂S(F1)

Consider the class G = {x 7→ g>x : g ∈ {e1,−e1, e2,−e2, . . . , dd,−ed} whose cardinality is
clearly 2d. That is, the 2d functions where each one returns one chosen coordinate of input
vector x along with a chosen sign. Now we first claim that F1 = cvx(G). Why is this?

Hence by Proposition 2 property (3) we have that

R̂S(FR) = R R̂S(G)

≤ O

(
Rmax

x∈X
‖x‖∞

√
log(2d)

n

)

2. `2 regularizer : Let F = {x 7→ 〈f, x〉 : ‖f‖2 ≤ R}. For this case we have that,

R̂S(F) =
1

n
Eε

[
max

f :‖f‖2≤R

∣∣∣∣∣
n∑
t=1

εtf
>xt

∣∣∣∣∣
]

=
1

n
Eε

[
max

f :‖f‖2≤R

∣∣∣∣∣f>
(

n∑
t=1

εtxt

)∣∣∣∣∣
]

=
1

n
Eε

[
max

f :‖f‖2≤R
‖f‖2

∣∣∣∣∣ f

‖f‖2

>
(

n∑
t=1

εtxt

)∣∣∣∣∣
]

=
R

n
Eε

[∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
2

]

=
R

n
Eε


√√√√∥∥∥∥∥

n∑
t=1

εtxt

∥∥∥∥∥
2

2


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≤ R

n

√√√√√Eε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
2

2


=
R

n

√√√√Eε

[
n∑
t=1

‖xt‖22 + 2
n∑
t=1

∑
s>t

εtεsx>t xs

]

=
R

n

√√√√ n∑
t=1

‖xt‖22 ≤
Rmaxx∈X ‖x‖2√

n

4 Applications

Example applications : Lasso, SVM, ridge regression, Logistic Regression (including kernel meth-
ods), `1 neural networks, matrix completion (max norm, trace norm), graph prediction

Observation : Hinge loss given by `(y′, y) = max{1 − y′y, 0} is 1-Lipschitz. Logistic loss given
by `(y′, y) = log(1 + e−y

′y) is 1-Lipchitz. Squared loss `(y′, y) = (y′ − y)2 is 4B Lipschtiz when
|y|, |y′| ≤ B. Absolute loss `(y′, y) = |y − y′| is 1-Lipchitz. In all these cases, using contraction
lemma we can remove the loss function and using the bound for ERM conclude that with probability
1− δ,

LD(f̂ERM)− inf
f∈F

LD(f) ≤ 2L ESEε

[
max
f∈F

n∑
t=1

εtf(xt)

]
+O

(√
log(1/δ)

n

)
where L is the corresponding Lipchitz constant of the loss.

1. SVM :

minimize
n∑
t=1

max{1− 〈f, xt〉 · yt, 0}

subject to ‖f‖2 ≤ R

This corresponds to class F given by linear predictors with Hilbert norm constrained by R

2. Lasso :

minimize

n∑
t=1

(y − 〈f, xt〉)2

subject to ‖f‖1 ≤ R

Corresponds to linear predictor with `1 norm constrained by 1
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3. `1 neural network with K layers. Loss could be squared loss or logistic loss. Let F1 be some
arbitrary base class of predictors. Recursively define the subsequent i layer neural network
predictor as follows

Fi = {x 7→
∑
j

wijσ(fj(x)) : ∀j, fj ∈ Fi−1,
∥∥wi∥∥

1
≤ Bi}

where σ is a 1-Lipchitz loss function. Then

R̂S(Fi) =
1

n
Eε

 max
‖wi‖

1
≤Bi

∀j, fj∈Fi−1

n∑
t=1

∑
j

εtw
i
jσ(fj(xt))



≤ 1

n
Eε

 max
‖wi‖

1
≤Bi

∀j, fj∈Fi−1

∥∥wi∥∥
1

max
j

∣∣∣∣∣
n∑
t=1

εtσ(fj(xt))

∣∣∣∣∣


≤ Bi
n
Eε

[
max

∀j, fj∈Fi−1

max
j

∣∣∣∣∣
n∑
t=1

εtσ(fj(xt))

∣∣∣∣∣
]

=
Bi
n
Eε

[
max
f∈Fi−1

∣∣∣∣∣
n∑
t=1

εtσ(fj(xt))

∣∣∣∣∣
]

≤ 2Bi
n

Eε

[
max
f∈Fi−1

n∑
t=1

εtσ(fj(xt))

]
= 2BiR̂S(σ ◦ Fi−1)

≤ 2BiR̂S(Fi−1)

Hence we can conclude that

R̂S(Fi) ≤

(
k∏
i=1

2Bi

)
R̂S(F1)
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