
Mathematical Foundations of Machine Learning(CS 4783/5783)

Lecture 2: Statistical Learning, Generalization and Uniform Convergence

1 Statistical Learning Framework

We already set up the basic notation for our learning problem. We used the notation X to indicate
the input or instance space, the space Y to indicate the space of all outcomes, and the loss function
` : Y × Y that evaluates the performance of our model when it predicts y′ ∈ Y when the desired
outcome is y ∈ Y as `(y′, y). In the first lecture we also considered two scenarios and while
introducing those scenarios, I mentioned this set U and specifically how it was different from the
input space X , especially in scenario one. To make this difference clear, say you were building a
face recognition application for your smart phone. X would be all possible images, meaning all
possible pixel values for each pixel. However, if you have a good face detection software available
(which most phones now do), then most images that are input to your face recognition system will
be faces, with a small number of non-face images due to errors in face detection. You can think of U
as this subset of images. Further, in the scenario one in the first lecture, we drew training samples
by randomly (uniformly at random) drawing an image from this set U . We also only considered
giving probabilistic guarantees for future instances drawn the same way. Of course in reality one
does not have access to this set U . However, the process of drawing from this special set U can be
closely (and in fact in a more general and elegant way) captured by the framework called Statistical
Learning framework. In this framework, we assume that there exists a distribution D on X ×Y that
is unknown to the learner. We further assume that the training sample S = {(x1, y1), . . . , (xn, yn)}
is obtained by repeatedly sampling instance labels from this same fixed distribution D. We also
assume that future instances are obtained by drawing from this distribution repeatedly. One can
think of the set U relative to X as capturing this distribution over just the instance space X .
That is, D can be thought of as distribution over images and corresponding labels that your face
recognition software might receive. Of course, it is worth noting that such an assumption that
instances come i.i.d. (independently and identically drawn) from a fixed distribution is not always
right. For instance, even in the face recognition application, in winter you might have more white
background due to snow and more people wearing warm hats whereas in summer background might
be much more greener and there might be lesser faces with hats. That said, while the assumption
might not be exactly correct, often the assumption is not too bad an approximation for the tasks
we would like. In any case, formally, in the statistical learning problem, there is a distribution D
over X × Y and training sample is obtained by drawing iid samples from this distribution and at
deployment time, instances are still drawn iid from this distribution. To make our lives simpler, let
us introduce some notations and terminology. Since at test time we obtain instances iid from the
distribution D, our hope is to ensure that expected loss over future draws is small. We will refer
to this expected loss as “Risk” and given a model g : X 7→ Y denote its risk as:

LD(g) = E(x,y)∼D [`(g(x), y)]

1

In the example we considered in the first lecture, we assumed that there was a set of models F =
{f1, . . . , fN} and that one of the models in this class was perfect with zero loss. This assumption
is often too strong, for instance this assumes something strong about P (Y |X) and hence is a
strong restriction on D. We would like to relax this assumption. In fact, we will make no explicit
assumption but instead modify our goal as follows. Given some fixed class of models F , we would
like our algorithm to have risk comparable to the best amongst this class of models F . That is, we
would like to ensure that our algorithm has low excess risk. By excess risk of a model g compared
to a class of models F we will refer to the quantity:

Excess risk of g w.r.t. model class F = LD(g)−min
f∈F

LD(f)

Now with all of this terminology, let us define the goal of statistical learning. Given a fixed
class of models F , and training sample S = {(x1, y1), . . . , (xn, yn)} drawn iid from a fixed but
unknown distribution D, the goal of statistical learning is to return a model f̂S for which with high
probability over draw of samples S, the excess risk of the model LD(f̂S)−minf∈F LD(f) is small.

2 Training Loss, Test Loss and Generalization

Perhaps the most well known terminology in ML is training loss, test loss (and sometimes validation
error). The training loss of a model g on training sample S is simply the average loss of the model
on the training sample which we denote as

L̂S(g) =
1

|S|
∑

(x,y)∈S

`(g(x), y)

when we collect data and set aside a subset of it that we don’t use in training phase in any way at
all, such a set is referred to as test set and test loss is simply the average loss of a model on this
test set. Since the test set is never used while training a model, due to law of large numbers, the
test loss of our learnt model is a good proxy for the risk of the trained model when the size of the
test set is large.

A common fallacy: A false line of reasoning that is often made is the following. Given a any
model f ∈ F , the law of large numbers tells us that when traing set is large enough, |L̂S(f)−LD(f)|
is small (with high probability or in expectation). Using concentration inequalities, the rate of
convergence can be made precise. Hence if I train a model f̂S on sampling set S and it has a small
training error, then since |L̂S(f̂S) − LD(f̂S)| is small, its risk or test error is also small. THIS
STATEMENT IS FALSE. The key thing to remember is that while for any f ∈ F , |L̂S(f)−LD(f)|
is small, this statement requires f to be picked without looking at the sample. If an f is picked
looking at the sample, the statement need not be true. As an example, let F in fact be all possible
models. In this case, think of an algorithm which looks at sample and picks a model that perfectly
fits exactly the test sample and elsewhere just returns a label of 0 always. Such an algorithm while
will have 0 training loss will invariably have a very large Risk. This is immediately clear when one
looks at test loss which will also be large. Thus it is important to recognize the order of quantifiers.
While it is true that for all f ,

P
(
|L̂S(f)− LD(f)| is large

)
is small

2

It need not be true that

P
(
∃f s.t. |L̂S(f)− LD(f)| is large

)
is small

While a blatant version of this fallacy is not common in ML research, subtle version of this fallacy
occurs all the time!

Think about your favorite ML benchmark dataset. Say CIFAR100 or imagenet. The first paper
that used these dataset, the test set would have been truly blind. But for every subsequent paper
written that uses these data sets, the authors of those paper would have read previous paper that
talk about test performance of each of their models on the so called test set. Hence, clearly for the
n’th paper that uses these dataset, the test set is not completely blind. For instance the authors
might already know that model 1 did better than models 2, 3 and 4 on these datasets (meaning on
the test set). This does mean that the more we use these standard datasets the more we overfit
to them. Of course this is a double edged sword in practical ML. On the one hand benchmark
datasets are very valuable assets that have helped drive development of some of the state of the
art models. On the other hand, the more we use them the more we might overfit.

In any case, let us for now leave this issue aside. The key point for us to take home is that
training error can be very different from testing error depending on our training algorithm. One
would reasonable think that for simpler algorithms the difference between training and test error
or risk is smaller than for more complicated one. Indeed, if our training algorithm was a dumb one
that just returned a fixed hypothesis irrespective of the training set, then the deviation between
test and training error is simply given by concentration inequalities. But the more complicated our
algorithm is, the larger this deviation could be. We say an algorithm generalizes well if its training
and test losses (risk) are close.

3 Empirical Risk Minimization and Uniform Convergence

3.1 Empirical Risk Minimizer (ERM)

Since we are interested in minimizing excess risk w.r.t. a set of models F , it is reasonable to expect
that our algorithm returns a model in F . Perhaps the most straightforward scheme to pick such
a model is to simply pick that model in F that has the lowest training loss. Such an algorithm is
referred to as the Empirical Risk Minimization (ERM) algorithm. The algorithm simply returns

f̂ERM ∈ arg min
f∈F

L̂S(f)

We use belongs to above as there could be multiple minimizers in which case we pick any one of
them. This algorithm is one of the most well studied algorithm in statistical learning theory. One
would hope, that at least for simple models, since the ERM minimizes training loss, its test loss
should also be as small as the best model. Indeed, if F had only one function this is true by law of
large numbers (concentration). But what about in the more general case?

3.2 ERM and Uniform Convergence

We already talked about ∀f, P
(
|L̂S(f)− LD(f)| is large

)
Vs P

(
∃f, |L̂S(f)− LD(f)| is large

)
and

how they can be different. The latter quantity it turns out plays an important role in understanding

3

the performance of ERM in general. To see this, consider the following simple observation.

P

(
LD(f̂ERM)−min

f∈F
LD(f) > 2ε

)
= P

(
LD(f̂ERM)− L̂S(f̂ERM) + L̂S(f̂ERM)−min

f∈F
LD(f) > 2ε

)
= P

(
LD(f̂ERM)− L̂S(f̂ERM) + max

f∈F

(
L̂S(f̂ERM)− LD(f)

)
> 2ε

)
≤ P

(
LD(f̂ERM)− L̂S(f̂ERM) + max

f∈F

(
L̂S(f)− LD(f)

)
> 2ε

)
≤ P

(
max
f∈F

∣∣∣L̂S(f)− LD(f)
∣∣∣ > ε

)
(1)

Thus we have shown that the probability that the excess risk of ERM is larger than some 2ε is

upper bounded by the probability that maxf∈F

∣∣∣L̂S(f)− LD(f)
∣∣∣ is larger than ε. The term on

the right is referred to as uniform convergence since we are asking uniformly over the model class,
what is the probability that average and expectation deviate by some threshold. Now say for any

δ, we are able to find an ε(δ, n) such that P
(

maxf∈F

∣∣∣L̂S(f)− LD(f)
∣∣∣ > ε(δ, n)

)
≤ δ then we can

conclude that for any δ > 0, with probability at least 1− δ over samples,

LD(f̂ERM)−min
f∈F

LD(f) ≤ 2ε(δ, n)

Hence the whole game now is to bound P
(

maxf∈F

∣∣∣L̂S(f)− LD(f)
∣∣∣ > ε

)
.

3.3 Finite class of Models

Let us first start with a finite class of models F and see how our bounds on learning depend on
n and |F| and δ. For majority of this course we will assume that the loss function is bounded (in
absolute) by some constant. In fact, we may assume w.l.o.g. its bounded by 1 because even if loss
is bounded by some other number we simply divide the loss by that number and this modified loss
is bounded by 1 (in the absolute). In this case, for any fixed f ∈ F , `(f(xt), yt)’s are iid random
variables whose expected value is LD(f) by definition. Now Hoeffding’s inequality (see reference
material) tells us that for any iid random variables Z1, . . . , Zn that are bounded by 1 (ie. each
|Zi| ≤ 1), for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
t=1

Zt − E [Z]

∣∣∣∣∣ > ε

)
≤ 2 exp(−nε2/2)

Hence, if for any f ∈ F we define Zft = `(f(xt), yt), then noting that Zf1 , . . . , Z
f
n are iid random

variables bounded by 1, we conclude from Hoeffding’s inequality that: for any fF

P
(∣∣∣L̂S(f)− LD(f)

∣∣∣ > ε
)
≤ 2 exp(−nε2/2)

This in itself is not enough since this is not a uniform convergence bound. However, since we are
considering a finite hypothesis class, lets use the above with union bound. Union bound tells us

4

that:

P

(
max
f∈F

∣∣∣L̂S(f)− LD(f)
∣∣∣ > ε

)
= P

(
∃f ∈ F s.t.

∣∣∣L̂S(f)− LD(f)
∣∣∣ > ε

)
≤
∑
f∈F

P
(∣∣∣L̂S(f)− LD(f)

∣∣∣ > ε
)

≤
∑
f∈F

2 exp(−nε2/2) = 2|F| exp(−nε2/2)

Now notice that in the above for any δ > 0 if we set ε to be such that 2|F| exp(−nε2/2) = δ, or in

other words, if we set ε =

√
2 log(2|F |/δ)

n then we can conclude that:

P

(
∃f ∈ F s.t.

∣∣∣L̂S(f)− LD(f)
∣∣∣ >√2 log (2|F |/δ)

n

)
≤ δ

Plugging this back in Eq. 1 we can conclude that:

P

(
LD(f̂ERM)−min

f∈F
LD(f) > 2

√
2 log (2|F |/δ)

n

)
≤ δ

Rewriting this (in terms of the complement) we get that for any δ > 0, with probability at least
1− δ over samples,

LD(f̂ERM)−min
f∈F

LD(f) ≤
√

8 log (2|F |/δ)
n

Thus we see that in the general bounded loss case, we can still conclude that with high probability

(at least 1− δ), excess risk of ERM w.r.t. model class F is bounded by O

(√
log(|F|/δ)

n

)
. That is

a bound that goes to 0 as 1/
√
n and has only a logarithmic dependence on |F| and on 1/δ.

3.4 What about Infinite set of Models F?

In practice, we often are interested not in a finite set of models but rather an infinite set. For
example, the set of all K layer neural network models or the set of all halfspaces etc. How should
one deal with infinite set of models?

Well a first cut approach is to approximate an infinite set by a finite set. For instance, for a
given F , if we are able to come up with a finite F ′ such that for any f ∈ F , there is an f ′ ∈ F ′
such that for all x, y, `(f(x), y) is close to `(f ′(x), y′). Then we can pay an additive factor for
approximation and just think of the model class as just being the finite F ′. However, think of the
simple problem of binary classification where X = [0, 1] (the interval between 0 and 1). and think
about F as being all possible real valued threshold such that anything to the left of the threshold
is labeled −1 and anything to the right is labeled +1. In this case, its not hard to see that no
finite F ′ can approximate F to an approximation error better than 1/2. However it turns out that
using ERM, thresholds can easily be learnt. Why is this? Think about how expressive is the class
of thresholds on a given set of n points. Why should this matter?

5

