
Mathematical Foundations of Machine Learning(CS 4783/5783)

Lecture 1: Setting Up The Machine Learning Problem

1 What is Machine Learning?

In traditional computer science, given a task or a set of tasks, the computer scientist or programmer
writes a program that performs the task. Example, say the last is to sort a given sequence of num-
bers. The programmer writes a program to sort, say the quick sort program which given a sequence
of numbers sorts it and outputs the sorted sequence. This approach is great for simpler tasks such
as sorting, searching, scheduling etc. But what about more complicated tasks. Say we want a
program that given an image needs to identify if there is a cat in the image or not, or a program
that can detect if an email is spam or not or a program that can use stream from lidar and camera
as input and can automatically drive a car well in traffic? It is nearly impossible for a human to
write a program with all its details to perform such tasks. The idea in Machine Learning (ML) is
to use examples or past experiences to learn to automatically generate such programs. Arthur Lee
Samuel coined the term Machine Learning and informally described it as: “the field of study
that gives computers the ability to learn without being explicitly programmed”. A
more elaborate version of this definition is:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E”. - Tom Mitchell

2 Setting up the Problem

X is the so called instance space, input space or all possible questions. Y is the outcome space, all
possible labels or answers. A hypothesis or model or program f : X 7→ Y, is a mapping from input
space to outcome space that is a candidate program to perform the given task. Given an instance
x ∈ X and label or outcome y ∈ Y and a model f , the loss function ` : Y × Y 7→ R measures how
well our candidate program or hypothesis f performed on input output pair (x, y). Specifically, we
consider the value of `(f(x), y) and the larger it is, the worse f performed on instance (x, y). As an
example, consider the task of classifying a given image as containing a cat in it or not. Given all
the poses, sizes, background, possible quality of images, different species of cats, it is impossible to
write a program explicitly for this task. If we consider setting up this problem as a ML problem,
X would be the set of all images. Y = {“cat”, “notcat”} and since its a binary classification task,
given a y′ ∈ Y, `(y′, y) = 11{y′ 6=y}. Specifically, given a program or model f : X 7→ Y, the loss of
the model f at classifying an image x with label y is given by `(f(x), y) = 11{f(x)6=y}.

1

2.1 A Simple Example:

For this lecture, we are going to consider a simple setting to give you a taste of what kind of ML
set up we can have, what style of algorithms one can consider and how to do some simple analysis
of them. While the example will be simple, it will demonstrate some key terminology, concepts
and help us set up the right framework for the right kind of ML problems. Specifically, for this
example, we will consider the case of binary classification. That is label set Y = {+1,−1} (Eg.
cat, not cat or spam, not spam etc). Further, assume that we have N models f1, . . . , fN and the
problem is such that one of these models (say fi∗) is always correct. That is y = fi∗(x) for any
(x, y) pair. However, the ML scientist or ML algorithm does not know which of these N models is
the correct one but only has access to these N models. Now we consider two scenarios and will try
to build algorithms for each of these and figure out an analysis for them. But before we do that,
let U (stands for universe) be the set of all input x ∈ X that our system would ever encounter
(or be asked to label). Note that while one can think of U = X , no system will be asked to label
arbitrary images, for instance, typical images encountered would be natural images. Think of U at
the set of images the learning algorithm might typically encounter. Now with this basic setting, let
us consider two scenarios.

Scenario 1: For scenario one, we randomly draw n examples x1, . . . , xn from U (with replace-
ment but since |U | >> n this does not matter really), and ask a human to label them as y1, . . . , yn
(assume the human labels them exactly and that yt = fi∗(xt)). We will refer to this set of labeled
examples S = {(x1, y1), (x2, y2), . . . , (xn, yn) as training set. Think about the case where size of
U is way larger than n. We would like to design an learning algorithm that given access to this
training sample, and knows the set of models f1, . . . , fN (but not the true model) will output a
model whose error on future draws from set U is small. That is, we would like to ensure that the
probability of a mistake in future draw of instances is as small as possible.

What is the algorithm? What kind of guarantee can we provide on its error? How does our
guarantee (bound) on error depend on N the number of models, on n the number of samples we
drew?

Before we answer these questions, let us consider the problems for which such a framework
is ideal for. Consider the example of image classification. In such a scenario, one can think of
U as the set of all natural images we might consider, for instance all images on the web. As a
training sample, we might randomly take images from the web and ask humans to label them. This
would give us the training set. More importantly, when future images from the web are randomly
presented to us, we are exactly the set up here. Of course, in practice this may not be the exact
scenario. The way we obtain training samples from the web might have biases and further, when we
use the learnt model, the distribution of instances we might be asked to predict or classify on might
be different from the one the training instances are drawn from. But baring too much disparity
between how we sample training and testing samples from U , this scenario which is often referred
to as statistical learning problem is a good model or framework for many tasks ML systems are
now famous for. Of course, our assumption that one of the N models is perfect or even that we
have a finite N number of models is a bit naive but we will work at this through the course. But
now back to the questions for this simple scenario.

Lets start with the question of algorithm. The only thing we know is that one of the N models
is perfect, and that samples are drawn randomly from U and that in the future, samples are drawn
from same distribution (that of randomly drawing from U). So perhaps the most straightforward

2

algorithm one can think of here is, take the training sample S, find a model f̂S ∈ {f1, . . . , fN} that
makes 0 error on the training sample (one has top exist as the perfect one belongs to this set) and
return that one. That is,

f̂S ∈

fi : i ∈ [N]&
∑

(x,y)∈S

11{fi(x)6=y} = 0

 .

Now that we fixed our algorithm, how do we analyze it? Hint: our algorithm can
pick any model consistent with training sample. So ask the question, what is the probability that
a bad one will be consistent with our training sample.

Proposition 1. For the algorithm above, for any δ > 0, with probability at least 1− δ over draws
of training samples (of size n),

P (f̂S(x) 6= y) ≤ log (N/δ)

n

Proof. Let Bε = {i ∈ [N] : P (fi(x) 6= y) > ε}. That is Bε is the set of indices of all models
(amongst the N models) that have probability of error larger than some ε. (the bad set). Now if
we can bound the probability with which one of the bad models belonging to the above set, could
be consistent with our training sample of size n, we would be done. To this end, consider an fi
such that i ∈ Bε. For any such fi, if we draw (x, y) pair from U at random, the probability that
we make an error is greater than ε by definition of Bε. That is,

P (fi(x) 6= y) = E
[

11{fi(x)} 6= y
]
≥ ε

However, what is the probability that such an fi is consistent with the training sample S? Well out
of n random tries, where in each try, the probability we make an error is at least ε, the probability
we make no errors is bounded by

P (∀t ∈ [n], fi(xt) = yt) =
n∏
t=1

P (fi(xt) = yt) = (1− P (fi(x) 6= y))n ≤ (1− ε)n ≤ exp(−εn)

The above is because xt, yt are drawn independently so probability of being correct on every sample
is the same. We also used the fact that 1− x ≤ exp(−x). Next, note that by union bound,

P (∃i ∈ Bε s.t. ∀t ∈ [n], fi(xt) = yt) ≤ |Bε| exp(−εn) ≤ N exp(−εn)

Thus we have thus shown that the probability that even one of the elements of Bε (the bad set)
could possibly be consistent with our training sample is upper bounded by N exp(−εn). Since this

holds for any ε, for any δ > 0, set N exp(−εn) = δ (i.e. ε = log(N/δ)
n). Then we notice that for any

δ > 0, the probability that an element of Bε is consistent with the training set is bounded by δ.
Thus, we conclude that with probability at least 1− δ, no element of Bε is consistent with training
sample. Hence, with probability at least 1− δ, any model consistent with training sample belongs
to Bc

ε and so specifically for the model returned by our algorithm,

P (f̂S(x) 6= y) ≤ ε =
log(N/δ)

n

3

It is important we parse the above proposition statement carefully. It says that probability
of error/mistake is bounded with high probability over training sample. Such statements we will
refer to as Probably Approximately Correct (PAC) framework. The approximately correct part
refers to the fact that the learning algorithm in the end only has a guarantee that says error is
bounded by something small and not that it is 0. The probably part refers to the fact that we have
a probabilistic guarantee that the statement holds with probability at least 1 − δ. Of course we
made the realizability assumption that our set of models has the perfect model. This is assumption
is called realizability assumption. When one relaxes this assumption, the problem is called agnostic
PAC. Agnostic standing for the fact that we will make no a priori assumptions on how y and x are
related in general.

Scenario 2: Let us motivate the second scenario using a different example. Say we are interested
in a binary classification problem again and still assume that once of the N models is perfect. Only
this time, think about the application as being spam filtering. For the applications in the previous
scenario, it made sense to assume that the sampling procedure to obtain training samples and the
way we get future instances are the same. However, if we consider spam filtering example, then
given the sample the system has collected so far consisting of examples of spam and not spam, we
might try to build a model that classifies new emails as spam or not. However, in the mean time, the
conniving spammer is also trying to beat you by picking the next instance not as a random element
of U but rather by picking one that can be sneaked past the filter. In fact, for such applications
it is obvious that one needs a ML system that is continually updating based on instances. So here
scenario 2. Every round t, we are provided with a new instance xt ∈ X that could be picked in an
arbitrary fashion (Eg. by a spammer wanting to thwart the system). Next the learning algorithm
classifies this xt into +1 or −1. Say ŷt ∈ Y = {±1} is the classification for round t. Finally we
assume that at the end of the round, after we make our classification, the true label yt = fi∗(xt) is
revealed to us.

How do we design an algorithm for this scenario? How many mistakes will the algorithm make,
can we bound it?

As a first cut, let us use the same algorithm (expect we update it after every round) as we
used for scenario 1. That is, on each round t, we pick amongst f1, . . . , fN some function that is
consistent with all the instance label pairs we have witnessed so far. How many mistakes will such
an algorithm make? Well note that at time 0, we can assume the entire set F0 = {f1, . . . , fN}
is consistent. Subsequently, each round we pick an element of Ft where Ft is the set of models
consistent with data so far. Notice that each time we make a mistake, we reduce the size of
consistent models by at least one since a mistake indicates that at least one model amongst the
current set Ft did not agree with the true label. Therefore, we can guarantee that we make at most
N mistakes. That is, for this algorithm, ∑

t

11{ŷt 6=yt} ≤ N

Is this the best we can do?

Lets try a slight modification to the earlier mentioned strategy. Just as above, we maintain on
every round t a set Ft of models that are consistent with all the instance label pairs we have so
far. Except, this time, instead of picking one member from this set and using that model to predict

4

label for xt, we instead take a majority vote amongst all the models in Ft. That is, we set

ŷt = sign

∑
f∈Ft

f(xt)


Why does this help?

This strategy helps because each time we make a mistake, it means that at least half the models
in Ft made a mistake.

Proposition 2. Let Ft = {fi : i ∈ [N], ∀s < t, fi(xs) = ys}. Define ŷt = sign
(∑

f∈Ft
f(xt)

)
. For

this strategy, we have the following mistake bound.∑
t

11{ŷt 6=yt} ≤ log2N

Proof. Simply note that F1 = {f1, . . . , fN} and so |F1| = N . Now further, note that for any round
t fo which ŷt 6= yt, we know that majority of f ∈ Ft are wrong and so we have that those wrong
models will be dropped the next round. Hence,

|Ft+1| ≤ |Ft|/2

Hence we conclude that |Ft+1| ≤ |F1|/2
∑t

j=1 11{ŷj 6=yj} = N/2
∑t

j=1 11{ŷj 6=yj} . Thus we can guarantee
that we can never make more than log2N number of mistakes because we know that for any t, |Ft|
is at least 1 (the one classifier that is perfect has to be in there). This proves the bound.

This second scenario is a simple example in the so called online learning setup.

3 What will we cover in this course?

In the previous section, the scenario one we presented is in the so called Statistical Learning
framework. Scenario two discussed was in the so called Online Learning framework. The example
set up we considered was of course toyish in that we assumed we had a perfect predictor (realizable
setting) and that it is amongst N models. In this class we will look at both statistical and online
learning frameworks and for much more general set ups. Beyond just binary classification problems,
or even just classification problems. We will look at not only realizable but more generally agnostic
settings.

While this is a tentative list, the syllabus/list of topics we will cover include:

1. Statistical Learning theory

(a) Generalization Error, Training Vs Test loss, Model Complexity

(b) PAC model and VC theory

(c) Rademacher Complexity and Uniform convergence

(d) Role of Regularization in learning, model selection and validation

(e) Algorithmic Stability

2. Online learning

5

(a) Online Bit prediction and Cover’s result

(b) Perceptron, winnow

(c) Online experts problem

(d) Online Gradient descent and Mirror descent

3. Boosting

4. Stochastic Optimization and Learning: including understanding Stochastic Gradient Descent

5. Bandit problems: both stochastic and adversarial settings

6. A primer to theory of deep learning: new challenges

7. Computational Learning theory: Computational hardness or learning, proper vs improper
learning

8. Societal aspects of ML: Differential Privacy, Right to be Forgotten, Fairness and ML

6

