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Differential Privacy and Machine Learning
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ML Requires Data

* By definition, ML is the task of automatically learning from
examples or instances (Data)

e Often privacy concerns about Data used:

 Medical records of patients (Eg. learn how much
smoking affects chances of getting cancer)

 User search logs (Eg. learning personalized query
retrieval for searches)

 Genetic information (Eg. to learn genetic predispositions)
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TECHNOLOGY

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr. AUG. 9, 2006

Buried in a list of 20 million Web search queries collected by AOL and
recently released on the Internet is user No. 4417749. The number was
assigned by the company to protect the searcher’s anonymity, but it was not
much of a shield.

No. 4417749 conducted hundreds of searches over a three-month period on
topics ranging from “numb fingers” to “60 single men” to “dog that urinates

e everythlng' ‘Thelma Amold's identity was betrayed by AOL
records of her Web searches, like ones for her dog,
Dudley, who clearly has a problem.
Erik S. Lesser for The New York Time



NETFLIX CANCELS
RECOMMENDATION CONTEST
AFTER PRIVACY LAWSCIT

Netflix is canceling its second $1 million Netflix Prize to
settle a legal challenge that it breached customer privacy as

nart nf thao firet rantoct’c rara for a hattoar mnwvio-
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| User2 |1 |2 |21 [1]

User3|? |42 2|2 |

e Given ratings by users for some movies
* Predict remaining ratings

 Though users were anonymized, some users on dataset
were identified

e How?!!!
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Netflix Challenae iNs’08]

Movies
NETFLIX User1[2?[5]2] 1]2]
User2|[1[2 |21 |1}

User3|? |42 2|2 |

e Some of the users posted reviews (for few movies) on
IMDB

 Only a very small overlap with IMDB was required

* You pretty much get the persons viewing record from /
Netflix without consent
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Privacy Concerns in ML

e (Clearly just anonymizing didn’t seem to do the trick here
e Of course in these cases data set was released.

e \What if we didn’t release data set:

e Trusted party uses data to learn classifiers or general
statistics

e Only releases general statistics?

e Qr classifier learnt from data?
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Thought Experiment

e Say we release general statistics from a study

* Eg. Smokers Vs Non-smokers (per state or county...)
e We release mean salary in the two groups
e Likelihood of Cancer in the two groups

e Average number of jobs held by people in the two
groups

Say “Fill Nates” from WA was in the dataset,
and Is very very rich.
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Thought Experiment:
subtler

* Building classifier and releasing only the classifier

e “Assume” chain smoking has some correlation with lower
Income

e Say we have classifier from two or more counties/hospital,
one of them has “Fill Nates”

e Say we use regression for learning the classifier

* By looking at weight put on income column of dataset, we
can infer if “Fill Nates” was part of study and which
hospital
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Differential Privacy

A deterministic algorithm cannot preserve privacy

Say S = (Datas,...,Datan) is the data provided to learning
algorithm (be it clustering, supervised learning etc).

Say (randomized) learning algorithm A takes this training
data and returns solution as A(S)

Algorithm A is (¢,5)- differentially private if for all samples S
and S’ that only differ by one data point and any set C

P(A(S) e C)<ePAS)eC)+9

0=0 Is called pure differential privacy
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Differential Privacy

Dataset + Dataset +

P(A(S) e C) < geP(A(S’) c C)

1 (for small ¢)
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Differential Privacy

Any deterministic algorithm either has to produce
constant outcome (making it useless)

If it doesn’t, define C to be the singleton set of outcome
under say S.

Then probability of this set under S’ is O
But under S probability is 1

Hence cannot be differentially private
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Obtaining Differential Privacy

* Typical mechanism: Add noise to outcome or inside
algorithm

e More privacy we want the more noise we add
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Back to Example |

First lets begin with the example of releasing mean
incomes (smokers Vs non-smokers)

Say incomes l4,...,In are the income of subjects in the
sample

. ] —
First compute mean jj — — I
n 2l

t=1
Add noise to it M + 2 max_income Laplace(0,1)/ ¢
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Why it works?

Take any arbitrary (possibly deterministic) function f(S).

Say b = %1%55 f(S) — f(S)]  where S and S’ differ on

one data point

A(S) = f(S) + B Laplace(0,1)/e

A 1s (e,0)-differentially private
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e—clF(S)—al/B

pA(S)(f) __
pacs) () e—elf(s")—=z|/B
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Hence
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e For the classification/regression problem we can of
course use the Laplace mechanism

e Can we do better?
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Back to Example Il

Yes! For instance for linear classifiers.

Say we use SVM or logistic regression as follows:
1 n
S)=a In,, — f(w' A 2
f(8) = argming, =3 6w e, i) + Alw

It can be shown that if ||x||’s < 1:

1

1£(S) - £ < —

Add vector version of noise to f, only scale now is of
order O(1/eAn)



Differential Privacy in ML

e Differential private versions of PCA, clustering algorithms,
deep learning etc. have been explored

e Nice properties of Differential Privacy
e post processing is ok
e compostability lemma

e Recently Differential Privacy was used as tool to allow
statistically safe reuse of data



