Linear Regression
In this lecture we will learn about Linear Regression.
Assumptions
Data Assumption: $y_{i} \in \mathbb{R}$
Model Assumption: $y_{i} = \mathbf{w}^\top\mathbf{x}_i + \epsilon_i$ where $\epsilon_i \sim N(0, \sigma^2)$
$\Rightarrow y_i|\mathbf{x}_i \sim N(\mathbf{w}^\top\mathbf{x}_i, \sigma^2) \Rightarrow P(y_i|\mathbf{x}_i,\mathbf{w})=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(\mathbf{x}_i^\top\mathbf{w}-y_i)^2}{2\sigma^2}}$
Estimating with MLE
\[
\begin{aligned}
\mathbf{w} &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \sum_{i=1}^n log(P(y_i|\mathbf{x}_i,\mathbf{w}))\\
&= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \sum_{i=1}^n \left[ log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) + log\left(e^{-\frac{(\mathbf{x}_i^\top\mathbf{w}-y_i)^2}{2\sigma^2}}\right)\right]\\
&= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} -\frac{1}{2\sigma^2}\sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 \\
&= \operatorname*{argmin}_{\mathbf{\mathbf{w}}} \frac{1}{n}\sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 \\
\end{aligned}
\]
The loss is thus $l(\mathbf{w}) = \frac{1}{n}\sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2$ AKA square loss or Ordinary Least Squares (OLS). OLS can be optimized with gradient descent, Newton's method, or in closed form.
Closed Form: $\mathbf{w} = (\mathbf{X X^\top})^{-1}\mathbf{X}\mathbf{y}^\top$
Estimating with MAP
Additional Model Assumption: $P(\mathbf{w}) = \frac{1}{\sqrt{2\pi\tau^2}}e^{-\frac{\mathbf{w}^\top\mathbf{w}}{2\tau^2}}$
\[
\begin{align}
\mathbf{w} &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} P(\mathbf{w}|y_1,\mathbf{x}_1,...,y_n,\mathbf{x}_n)\\
&= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \frac{P(y_1,\mathbf{x}_1,...,y_n,\mathbf{x}_n|\mathbf{w})P(\mathbf{w})}{P(y_1,\mathbf{x}_1,...,y_n,\mathbf{x}_n)}\\
&= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} P(y_1,...,y_n|\mathbf{x}_1,...,\mathbf{x}_n,\mathbf{w})P(\mathbf{x}_1,...,\mathbf{x}_n|\mathbf{w})P(\mathbf{w})\\
&= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \prod_{i=1}^n P(y_i|\mathbf{x}_i,\mathbf{w})P(\mathbf{w})\\
&= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \sum_{i=1}^n \left[ logP(y_i|\mathbf{x}_i,\mathbf{w})+ logP(\mathbf{w})\right]\\
&= \operatorname*{argmin}_{\mathbf{\mathbf{w}}} \frac{1}{2\sigma^2} \sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 + \frac{1}{2\tau^2}\mathbf{w}^\top\mathbf{w}\\
&= \operatorname*{argmin}_{\mathbf{\mathbf{w}}} \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 + \lambda|| \mathbf{w}||_2^2 \tag*{$\lambda=\frac{\sigma^2}{n\tau^2}$}\\
\end{align}
\]
This formulation is known as Ridge Regression. It has a closed form solution of: $\mathbf{w} = (\mathbf{X X^{\top}}+\lambda^2 \mathbf{I})^{-1}\mathbf{X}\mathbf{y}^\top$
Summary
Ordinary Least Squares:
- $\operatorname*{min}_{\mathbf{\mathbf{w}}} \frac{1}{n}\sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2$.
- Squared loss.
- No regularization.
- Closed form: $\mathbf{w} = (\mathbf{X X^\top})^{-1}\mathbf{X} \mathbf{y}^\top$.
Ridge Regression:
- $\operatorname*{min}_{\mathbf{\mathbf{w}}} \frac{1}{n}\sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 + \lambda ||\mathbf{w}||_2^2$.
- Squared loss.
- $l2\text{-regularization}$.
- Closed form: $\mathbf{w} = (\mathbf{X X^{\top}}+\lambda \mathbf{I})^{-1}\mathbf{X} \mathbf{y}^\top$.