
Rovio Lego Collector

Joe McCourt and Jun Nishiguchi

Abstract— Our objective is to have the Rovio robot find and
collect Legos on the floor into one pile. Machine vision tech-
niques are used to find the relative Lego positions. The Rovio
robot moves towards and centers in on the closest detected
Lego. When the Lego is no longer in view it rotates around
until it is facing the origin of the Rovio ceiling localization and
and drives to the origin. It then back ups and scans around for
more Legos to collect.

I. INTRODUCTION

Legos are awesome, but they can sometimes be tedious
to clean up. A Rovio robot could be able to collect Legos
left on the floor and organize them by size and shape,
greatly increasing Lego fun. Our Rovio performs tasks that
incorporate multiple topics we have covered in this class
including control, localization, and machine vision.

The first task is to find and identify the objects in the
world. We worked on using image processing techniques to
find object pixel coordinates, then developing a method to
calculate the position of the object on the ground.

We are able to detect red, yellow, light blue, orange, black
and white colored bricks. An SVN repository of all of our
code is located at http://code.google.com/p/roviolego/ .

II. THE ROVIO ROBOT

The robot we are using is the WoWee Rovio robot.
Lego bricks are our objects of interest. We have attached
a simple plow to the Rovio so it can push Lego bricks.
Localization data is collected using the base station beam
which projects on the ceiling. The primary sensor we are
using for processing is the Rovio’s camera.

The Rovio acts as a web server which we can connect
to and control remotely. Using the TA’s Interface.py, we are
able to receive real time image data from this webcam. We
are primarily using ROS to interface with the robot and the
controller we are using is written in C++. Initially the image
processing was done in Matlab but we decided to port it to
OpenCV due to the slow speed of Matlab.

III. MACHINE VISION:

To find the pixel coordinates of the Lego we first take the
raw image and an image that is a solid color which matches
the color of the Lego we wish to find. Then we subtract and
threshold the two images so that only the areas with colors
near that of the subtracted color remain. This is repeated for
different RGB values of the colors of the Legos we wish to
detect. Next, we apply a morphological opening algorithm to
filter out noise. Then we use a blob detection algorithm to
find the objects in the binary image and mark their average
pixel locations.

Fig. 1. Original Image

It is possible to use HSV values, however RGB values
gave us good results. The algorithm threshold for each color
is different due to the fact that each color can potentially
introduce more noise to the binary image. For example, when
detecting the green and blue Legos, there were situations
when “blobs” were detected in the carpet because of the
color of some carpet regions. Since there are three channels,
the absolute difference in pixel values are then compared to
a threshold to see if it qualifies as a pixel match. Once again,
the optimal threshold for this differs according to the color.
Fig. 2 shows the result. Notice how the black portions of
the image are where all three image channels “match” the
Lego colors. This threshold can be changed depending on
how much noise the next phase can handle.

The next phase includes a combination of morphological
filtering techniques such as opening and closing. The opening
technique for example can filter out small non-Lego objects.
It should be noted here that at this stage it is not fully
necessary to get rid of all small objects. This is because some
colors such as yellow change dramatically with lower light
levels. If the Rovio mostly sees a mostly shadowed yellow
Lego, then it will only recognize the brightly lit part, since
that is the color it is looking for. Therefore, in some situations
it can be worth using closing in order to increase the size
of such “potential” Legos. The result of the subtraction and
thresholding procedure is given in Fig. 3.

The final step allows us to perform noise filtering as
well as Lego detection. The blob detection phase uniquely
identifies blobs for the colors desired, additionally it allows
for only certain sizes. This is how we can avoid identifying
large reddish objects such as cones accidentally. A further



Fig. 2. Binary image

Fig. 3. Background subtraction and thresholding

improvement to this method could be to adaptively change
the range depending on how far the center of the blob is
from the Rovio since Legos close to the Rovio will appear
larger. It turns out that due to the camera position, this step
was not strictly necessary. If the camera was an inch from
the ground this idea would be required. The blob detection
phase will return the pixel location of the lowest detected
Lego on the image, or in other words, the closest Lego to
the robot.

1) Finding the 2-D ground coordinates of the object:
All of the objects we are interested in are on the floor.
We can take advantage of this fact by using the pinhole
camera model to convert the pixel coordinates of the Lego
on the webcam image to an (x,y) coordinate relative to the
Rovio. The geometry is such that it can calculate the (x,y)
coordinates given that we take calibration measurements of
the following three values beforehand from a test image: (1)
the number of pixels the test object is located in the image
under the horizon, (2) the actual distance from the Rovio to
the test object, and (3) the height of the camera from the
ground. Note that the test object must be located directly in
front of the Rovio for these calibration measurements.

Fig. 4. Blob detection

In order to determine where the horizon line is in the
webcam, the method we used was to place the Rovio looking
down a long hallway and mark the position on the webcam
image where the end of the hallway was. For the calibration
of the distance to the test image, we used a value of 5 feet.
After measuring these values, we are able to calculate the
focal length, f = 700px. Using this, we can now calculate a
2-D coordinate for the location of an object on the ground,
relative to the position of the Rovio. xpixel and ypixel denote
the pixel location with the bottom middle of the webcam
image set as the origin. h denotes the height of the camera
from the ground (3.5in). The following equations were used
to calculate the 2-D ground coordinates of the object:

x = y×x
f

y = f×h
ypixel

One of the problems that were encountered using the
Rovio was that the video feed would drop and the OpenCV
code could not retrieve the image data. We were able to
circumvent this problem by retrying until an image was
loaded. There is also a related issue where the Rovio image
data was corrupted but it was still readable and would result
in inaccurate data. For this, the controller would disregard a
sudden change in the data by confirming it’s existence over
several frames.

IV. CONTROLLER

Smooth and consistent movement is quite difficult with
the Rovio robot. The rotate in place command rotates the
robot a minimum of about 20 degrees; this is too much for
the control we were seeking. Fortunately due to the Rovio’s
unique three wheel design, different modes of motion can be
used to change angle. The motion we used was rotating only
the rear wheel. This motion makes the Rovio sweep around
in a circle and was particularly useful for our project as it can
rotate around a Lego without moving it and without requiring
any complicated high level path planning. An important note
is that since it is a circle, at a certain distance moving one



way will switch the way the angle of object changes with
respect to the robot.

Originally we thought we could map all the Legos into a
global reference frame and then use high level path planing
to move them all into a pile. We decided against this when
we discovered how inaccurate localization and control was.

One attempt to improve localization was to read encoder
values. This was done by modifying Interface.py so that the
velocity actually returned accumulated encoder values. In the
controller, the different commands would reset the encoder
values when they were finished. While doing control based
on encoders seemed promising at first, tests showed that even
simply moving forward two feet could have errors of a foot
or more. Another thing we tried was to put a Kalman filter
on the overhead beam localization. While this seemed to
work alright it was lagged behind the robot true position too
much and didn’t handle angle wrap around properly. Without
mapping it turned out that only a vague sense of there the
origin was needed to group all the Legos together given a
long operating time.

To get something basic working the robot follows just a
simple behavior. When there are no more commands left,
the commands are set to rotate until it finds a Lego, move
towards the Lego while rotating if it gets too out of center,
rotate to face the origin, drive to the origin, backup, and then
rotate in place scanning for more Legos as illustrated in Fig.
5.

To abstract sending the robot commands, we created a
stack of commands for the main control loop to execute.
The array cmds stores the values of the commands to pass
and the array cmdTypes stores what type of command it is.
A counter numCmds keeps track of how many commands
there are. When a command is finished it simply decrements
numCmds, allowing the next command on the stack to be
executed, otherwise the current command keeps being used
in the main loop.

A problem encountered is that sometimes information
from the Rovio halts. A check to help prevent improper
behavior when this happens was to have the robot pause
and do nothing if the odomotery wasn’t updated since the
last main loop iteration.

V. FUTURE WORKS

Localization: What we have now is fairly good mapping of
Lego positions, but only with respect to the robot body frame.
We need localization working well to map these positions to
a global frame. This would make the processed data more
useful, especially since the Lego is out of sight when the
it is closer than about a foot to the robot. An advanced
technique that might work well would be to use SLAM

Fig. 5. Block diagram of the controller

since the Legos provide good markers to identify and track,
although there is the added complication that the robot is
moving the landmarks.

Planning: Once we have better localization we could use
high level planning techniques to gather the Legos more
efficeintly. To be able to group Legos by type and color we
would need a high level planner that could navigate around
obstacles so as to not push the wrong Legos.

A. Better Lego Identification:

Legos come in besides many colors, many shapes as well.
The 2x2 bricks we used were particularly good for detection
since they have roughly the same size from every perspective.
More complicated methods would be required to identify
different types of Legos.


