
Knowledge-Based Systems 



Announcements 

• Review sessions 

• CS 4701 – focus on AI 

 



Schedule 

• Search 

• Machine learning 

• Knowledge based systems 

• Discovery 



History of AI  
1943 – 1969 The Beginnings 

1943 McCulloch and Pitts show networks of neurons can compute and learn 
any function 

1950 Shannon and Turing wrote chess programs 

1951 Minsky and Edmonds build the first neural network computer (SNARC) 

1956 Dartmouth Conference – Newell and Simon brought a reasoning 
program “The Logic Theorist” which proved theorems.  

1952 Samuel’s checkers player 

1958 McCarthy designed LISP, helped invent time-sharing and created Advice 
Taker (a domain independent reasoning system) 

1960’s Microworlds – solving limited problems: SAINT (1963), ANALOGY 
(1968), STUDENT (1967), blocksworld invented.  

1962 Perceptron Convergence Theorem is proved. 



1952 Samuel’s checkers player o TV 



Arthur Samuel (1901-1990) 



Example ANALOGY Problem 



Blocksworld 



History of AI 
1966 – 1974 Recognizing Lack of Knowledge 

• Herb Simon (1957): Computer chess program will 
be world chess champion within 10 years. 

• Intractable problems, lack of computing power 
(Lighthill Report, 1973) 

• Machine translation 

• Limitations in knowledge representation (Minsky 
and Papert, 1969) 

 Knowledge-poor programs 



Knowledge Representation 
• Human intelligence relies on a lot of background knowledge  

– the more you know, the easier many tasks become 

– ”knowledge is power” 

– E.g. SEND + MORE = MONEY puzzle. 

• Natural language understanding 

– Time flies like an arrow. 

– Fruit flies like a banana. 

– John saw the diamond through the window and coveted it 

– John threw the brick through the window and broke it 

– The spirit is willing but the flesh is weak. (English) 

– The vodka is good but the meat is rotten. (Russian) 

• Or: Plan a trip to L.A.  



Domain knowledge 

• How did we encode domain knowledge so far?  

–For search problems? 

–For learning problems? 

 



Knowledge-Based Systems/Agents 

• Key components: 
– Knowledge base: a set of sentences expressed in some 

knowledge representation language 
– Inference/reasoning mechanisms to query what is 

known and to derive new information or make 
decisions.  

• Natural candidate:  
– logical language (propositional/first-order)  
– combined with a logical inference mechanism  

• How close to human thought? 
– In any case, appears reasonable strategy for machines.  
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Example: Autonomous Car 

State: k-tuple  
(PersonInFrontOfCar, Policeman, Policecar, Slippery, 

YellowLight, RedLight)  

Actions: 
Brake, Accelerate, TurnLeft, etc. 

Knowledge-base describing when the car should brake: 
( PersonInFrontOfCar  Brake ) 
((( YellowLight  Policeman )  (Slippery ))  Brake ) 
( Policecar  Policeman ) 
( Snow  Slippery ) 
( Slippery  Dry ) 
( RedLight  Brake ) 

 
 

Does (Policecar, YellowLight, Snow) imply Brake? 
A=Yes    B= No 



What the computer “sees”: 

State: k-tuple  
(x1, x2, x3, x4, x5, x6, x7)  

Actions: 
x8, x9, x10, etc. 

Knowledge-base describing when x: 
( x1  x8 ) 
((( x5  x2 )  (x4 ))  x8) 
( x3  x2 ) 
( x7  x4 ) 
( x4  x11 ) 
( x6  x8) 

 
 Does (x3, x5, x7) imply x8? 

A=Yes    B= No 



Logic as a Knowledge Representation 

• Components of a Formal Logic: 

– Variables and operators, syntax 

– semantics (link to the world, truth in worlds) 

– logical reasoning: entailment  =  

• if, in every model in which α is true, β is also true. 

– inference algorithm derives 

• KB  α, i.e., α is derived from KB.  

(x+y=4) entails that  
A) x=2 y=2      B) 2x+2y=8    C) Neither   D) Both 



Models 

• Model is an instantiation of all variables 

• All models = all possible assignments 

• Sentence α is true in model m, then m is a 
model of α 

• M(α) refers to the set of all models that satisfy 
α 

• α = β iff M(α)  M(β)  
• β iff M(α)  is contained in M(β) 

 



Possible models for the presence of pits in [1,2] [2,2] [3,1] 
Dashed = M(α1) where α1= P1,2  (no pit in [1,2]) 
Solid = M(KB) with observation of B1,1  B2,1 (no breeze in [1,1] and breeze in [2,1]) 



Possible models for the presence of pits in [1,2] [2,2] [3,1] 
Dashed = M(α2) where α2= P2,2  (no pit in [2,2]) 
Solid = M(KB) with observation of B1,1  B2,1 (no breeze in [1,1] and breeze in [2,1]) 



Soundness and Completeness 
Soundness: 
 An inference algorithm that derives only entailed 

sentences is called sound or truth-preserving.  
  KB  α implies KB = α 
Completeness: 
 An inference algorithm is complete if it can derive 

any sentence that is entailed. 
   KB  = α implies KB  α  
 
Why soundness and completeness important?  
   Allow computer to ignore semantics and “just 

push symbols”! 



AE Duncan-Jones - 1935  



Entailment vs. Implication 

• Entailment (KB  = α) and implication (KB  α) 
can be treated equivalently if the inference 
process is sound and complete. 



Propositional Logic: Syntax 

• Propositional Symbols 
– A, B, C, … 

• Connectives 
–  , , , ,  

• Sentences 
– Atomic Sentence: True, False, Propositional Symbol 
– Complex Sentence: 

• (Sentence ) 
• ( Sentence V Sentence ) 
• ( Sentence  Sentence ) 
• ( Sentence  Sentence ) 
• ( Sentence  Sentence ) 

• A KB is a conjunction (ANDs) of many sentences 
 



Example: Autonomous Car 
Propositional Symbols 

PersonInFrontOfCar, Policeman, .. Brake, Accelerate, TurnLeft  
Rules: 

( PersonInFrontOfCar  Brake ) 
 ((( YellowLight  Policeman )  (Slippery ))  Brake )  
 ( Policecar  Policeman ) 
 ( Snow  Slippery ) 
 ( Slippery  Dry ) 
 ( RedLight  Brake ) 

from sensors: 
 YellowLight  

  RedLight  
  Snow  
  Dry  
  Policecar  
  PersonInFrontOfCar  

Initial 
KB 

Added to  
KB 



Propositional Logic: Semantics 

• Model (i.e. possible world):  

– Assignment of truth values to symbols  

– Example: m={P=True , Q=False} 
• Note: Often called “assignment” instead of “model”, and “model” is used for 

an assignment that evaluates to true. 

• Validity: 

– A sentence  is valid, if it is true in every model. 

• Satisfiability: 

– A sentence  is satisfiable, if it is true in at least one model. 

• Entailment:  

–   =  if and only if, in every model in which  is true,  is also true. 

Models 



Stay at home 

• Sick StayAtHome  

• true true    

• false false    

• false true    

 

Does Sick entail StayAtHome? 
A=Yes B=No 



Puzzling aspects of Propositional Logic 

• Non causality 
– (5 is odd  Tokyo is the capital of Japan) 

• True, because whenever 5 is odd, Tokyo is the capital of Japan. 
Nothing to do with causality 

• Statement always true when antecedent is false 
– (5 is even  Sam is smart) 

• True, because 5 is never even, so no models where this 
statement is incorrect, regardless of whether Sam is smart or 
not 

• A  B  
– read: B is true whenever A is true 

 



Propositional Logic: Semantics 

(PQ)  (P)  (Q)  
A) True  B) False 

Models 



Creating a KB 

• Variables 
– Pi,j is true if there is a pit at position (i,j) 
– Bi,j is true if there is a breeze at position (i,j) 

• Knowledge 
– R1: P1,1     There is no pit in [1,1] 
– R2: B1,1(P1,2P2,1)  Square is breezy iff next to pit 
– R3: B2,1(P1,1P2,2P3,1) 

• Perceptions 
– R4: B1,1   There is no breeze in [1,1] 
– R5: B2,1   There is breeze in [2,1] 



Model Checking 
• Idea: 

– To test whether  = , enumerate all models 
and check truth of  and .  

–   entails  if no model exists in which  is true 
and  is false (i.e. (  ) is unsatisfiable) 

• Proof by Contradiction: 

  =  if and only if the sentence (  ) is 
unsatisfiable. 



Example of model checking 

•  |=  iff the sentence (  ) is unsatisfiable  
• Prove that (-P and (Q  P))  Q  

– By showing that [(-P and (Q  P))  Q] is not satisfiable 

• Possible English translation: 
– P=“The street is wet” 
– Q=“It is raining” 
– Does “The street not wet” (P) and “it is raining street is wet ” (Q  P) imply that “It is not 

raining? (Q)? 

• Test if [(-P and (Q  P))  Q] is satisfiable. 
– It is not satisfiable (always false), therefore (-P and (Q  P)) entails  Q 

 

 

P Q P QP P  (Q  P) (P  (Q  P)) Q 

T T F T F F 

T F F T F F 

F T T F F F 

F F T T T F 

Models 



Model Chekcing 

• Variables: One for each propositional symbol 

• Domains: {true, false} 

• Objective Function: (  )  

• Which search algorithm works best? 

 



Doesn’t scale well… 



Inference: Reasoning with Propositional Logic 

Modus Ponens:  
Know:      If raining, then soggy courts.  

and                   It is raining. 

Then:        Soggy Courts.  

Modus Tollens: 
Know:      If raining, then soggy courts. 

And            No soggy courts. 

Then:         It is not raining.  

And-Elimination: 
Know:      It is raining and soggy courts. 

Then:         It is raining.  

 

Latin for “the way that affirms by affirming” 

Latin for "the way that denies by denying” 

(  )     

(  )     

http://en.wikipedia.org/wiki/Latin_language
http://en.wikipedia.org/wiki/Latin_language


Example: Forward Chaining 
Knowledge-base describing when the car should brake? 

( PersonInFrontOfCar  Brake ) 
 ((( YellowLight  Policeman )  (Slippery ))  Brake )  
 ( Policecar  Policeman ) 
 ( Snow  Slippery ) 
 ( Slippery  Dry ) 
 ( RedLight  Brake ) 
 ( Winter  Snow ) 

Observation from sensors: 
 YellowLight  RedLight  Snow  Dry  Policecar  PersonInFrontOfCar  
What can we infer? 
• Policecar  ( Policecar  Policeman ): Modus Ponens: Policeman 
• Dry  ( Slippery  Dry ): Modus Tollens: Slippery 
• YellowLight  Policeman  Slippery   ((( YellowLight  Policeman )  (Slippery ))  

Brake ): Modus Ponens: Brake 
• YellowLight  RedLight: And Elimination: YellowLight  

Inferring (Winter) from (Snow  ( Winter  Snow )) is 
 

A) Modus Ponens B) Modus Tollens  C) And elimination 



Other rules 



Inference Strategy: Forward Chaining 

Idea:  

– Infer everything that can be inferred. 

– Notation: In implication   , we say that  

•  (or its components) are called premises,  

•  is called consequent/conclusion.  

Forward Chaining: 

Given a fact p to be added to the KB,  

1. Find all implications I that have p as a premise 

2. For each i in I, holds 

a) Add the consequent in i to the KB 

Continue until no more facts can be inferred.  



Inference Strategy: Backward Chaining 

Idea: 
– Check whether a particular fact q is true. 

 

Backward Chaining: 

Given a fact q to be “proven”,  

1. See if q is already in the KB. If so, return TRUE. 

2. Find all implications, I, whose conclusion “matches” q.  

3. Recursively establish the premises of all i in I via 
backward chaining.  

 Avoids inferring unrelated facts. 



Example: Backward Chaining 
Knowledge-base describing when the car should brake: 

( PersonInFrontOfCar  Brake ) 
 ((( YellowLight  Policeman )  (Slippery ))  Brake )  
 ( Policecar  Policeman ) 
 ( Snow  Slippery ) 
 ( Slippery  Dry) 
 ( RedLight  Brake )  
 ( Winter  Snow ) 

Observation from sensors: 
 YellowLight  RedLight  Snow  Dry  Policecar  PersonInFrontOfCar  
Should the agent brake (i.e. can “brake” be inferred)?  
• Goal: Brake 

– Modus Ponens (brake): PersonInFrontOfCar 
• Failure: PersonInFrontOfCar  Backtracking 

• Goal: Brake 
– Modus Ponens (brake): YellowLight  Policeman  Slippery 
– Known (YellowLight): Policeman  Slippery 
– Modus Ponens (Policeman): Policecar  Slippery 
– Known (Policecar):  Slippery 
– Modus Tollens (Slippery): Dry 
– Known (Dry) 



Conjunctive Normal Form 

• Convert expressions into the form 

– (l1,1…  l1,k )  …  (ln,1…  ln,k )  

– Conjunction of disjunctions 

– k-CNF  (k literals) 

• Every expression can be transformed into 3-
CNF 



Conjunctive Normal Form 

• Original R2 (From Wumpus) 
– B1,1(P1,2P2,1) 

• Biconditional elimination 
– (B1,1 (P1,2P2,1))  ((P1,2P2,1)  B1,1) 

• Implication elimination 
– (B1,1(P1,2P2,1))  ((P1,2P2,1)  B1,1) 

• De Morgan 
– (B1,1P1,2P2,1)  ((P1,2  P2,1)  B1,1) 

• Distributivity of  
– (B1,1P1,2P2,1)  (P1,2B1,1)  (P2,1 B1,1) 



Conjunctive Normal Form 

• Algorithms exist for 3-CNF 

– E.g. 3-SAT 


