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Colorimetry as Linear Algebra

CS 465 Lecture 23
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Murdoch redux

• RGB colors add as vectors

– so do primary spectra in additive display (CRT, LCD, etc.)

• Chromaticity: color ratios (r = R/(R+G+B), etc.)

– color without regard for overall brightness

• Color matching and metamers

– any spectrum can be matched by combining 3 primaries

– metamers: different spectra that look the same

• CIE colorimetry

– X, Y, and Z: standardized hypothetical primaries

– x!, y!, z !: color matching functions for X, Y, Z
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Approaching color mathematically

• Three distinct ideas relating color values to stimuli

– Primaries and additive color: R, G, and B tell how much you
turn up three primary spectra

– Sensitivities and color detection: R, G, and B are the outputs
of detectors with three sensitivity functions

– Color matching functions and metamers: R, G, and B are the
amounts of three primaries required to match a given
spectrum

© 2005 Steve Marschner • 4Cornell CS465 Fall 2005 •!Lecture 23

Math of additive mixing

• Simply add contributions of primaries per wavelength

– key property: all wavelengths change by the same scale factor
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A simple light detector

• Produces a number when photons land on it

– value depends strictly on the number of photons detected

– each photon has a probability of being detected that
depends on the wavelength

– (can’t distinguish signals caused by different wavelengths)

• This model works for many detectors:

– based on semiconductors (such as in a digital camera)

– based on visual photopigments (such as in human eyes)
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A simple light detector
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Light detection math

• Same math carries over to power distributions
– spectrum entering the detector is s(!)

– detector has its spectral sensitivity or spectral response, r(!)

measured signal input spectrum

detector’s sensitivity
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Light detection in the eye

• Recall there are three types of cones

– call them S, M, L for short, medium, long wavelengths

– eye therefore detects three values from a spectrum,
corresponding to three response functions:
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Spectra as vectors

• Additive synthesis and detection correspond to basic
linear algebra concepts

– for concreteness, think of spectra as having a finite number
of little bands

– continuous spectrum s(!) becomes discrete spectrum s[i]
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Color operations as vector algebra

• Additive display (synthesis):

– linear combination of spectra:

– is like linear combination of vectors, or matrix multiplication:
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Color operations as vector algebra

• Color detection (analysis):

– linear measurement of spectra:

– is like a dot product of vectors:
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Color operations as vector algebra

• Color detection (analysis):

– three-band linear measurement of spectra corresponds to
three dot products, or a matrix multiplication:
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Pseudo-geometric interpretation

• A dot product is a projection

• We are projecting a high dimensional vector (a
spectrum) onto three vectors

– differences that are perpendicular to all 3 vectors are not
detectable

• For intuition, we can imagine a 3D analog

– 3D stands in for high-D vectors

– 2D stands in for 3D

– Then vision is just projection onto a plane
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Pseudo-geometric interpretation

• The information available to the visual system about a
spectrum is three values

– this amounts to a
loss of information
analogous to
projection on a plane

• Two spectra that
produce the same
response are
metamers
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Color reproduction

• Have a spectrum s; want to match on RGB monitor

– “match” means it looks the same

– any spectrum that projects to the same point in the visual
color space is a good reproduction

• Must find a spectrum that the monitor can produce
that is a metamer of s

R, G, B?
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CRT display primaries

wavelength (nm)
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– Curves determined by phosphor emission properties
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LCD display primaries

– Curves determined by (fluorescent) backlight and filters
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Color reproduction

• Say we have a spectrum s we want to match on an
RGB monitor

– “match” means it looks the same

– any spectrum that projects to the same point in the visual
color space is a good reproduction

• So, we want to find a spectrum s’ that the monitor
can produce that matches s

– that is, we want to display a metamer of s on the screen
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Color reproduction

• We want to compute
the combination of
r, g, b that will project
to the same visual
response as s.
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Color reproduction as linear algebra

• What color do we see when we look at the display?

– Feed C to display

– Display produces s’

– Eye looks at s’ and produces V
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Color reproduction as linear algebra

• Goal of reproduction: visual response to s and sa is
the same:

• Substituting in the expression for s’,

color matching matrix for RGB
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Color matching functions

• Used like response functions, but give primary weights

– e.g. R,G,B color matching functions, dotted with a spectrum,
tell how much of a particular R, G, and B are required to
match the spectrum

• Just derived them for a particular display

– also can measure directly

– in fact, from visual experiments we can only get color
matching functions, not S, M, and L

• Recall previous discussion: CIE XYZ system

– standard hypothetical primaries defined only via color
matching functions
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Color matching in practice

• In practice, we have color matching functions, not the
S, M, and L sensitivities

– but any color matching functions are just as good as SML for
matching colors

– any colors with the same X, Y, Z values have the same S, M,
L values (they have to, because the colors match!)

– so in practice color matching is done thus:

• and the results are the same as with MSML because any
color matching matrices span the same space
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Color matching in practice

you can compute the point s’ 
using any basis for the 
human visual subspace
(you are just matching the
response to s and s’)
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Basic colorimetric concepts

• Luminance

– the overall magnitude of the the visual response to a
spectrum (independent of its color)

• corresponds to the everyday concept “brightness”

– determined by product of SPD with the luminous efficiency
function V! that describes the eye’s overall ability to detect
light at each wavelength

– e.g. lamps are optimized
to improve their luminous
efficiency (tungsten vs.
fluorescent vs. sodium vapor)
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Luminance, mathematically

• Y just has another response curve (like S, M, and L)

– rY is really called “V!”

• V! is a linear combination of S, M, and L

– Has to be, since it’s derived from cone outputs
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Color spaces

• Need three numbers to specify a color

– but what three numbers?

– a color space is an answer to this question

• Common example: monitor RGB

– define colors by what R, G, B signals will produce them on
your monitor

(in math, s = RR + GG + BB for some spectra R, G, B)

– device dependent (depends on gamma, phosphors, gains, …)

• therefore if I choose RGB by looking at my monitor and
send it to you, you may not see the same color

– also leaves out some colors (limited gamut), e.g. vivid yellow
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Standard color spaces

• Standardized RGB (sRGB)

– makes a particular monitor RGB standard

– other color devices simulate that monitor by calibration

– sRGB is usable as an interchange space; widely adopted today

– gamut is still limited
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A universal color space: XYZ

• Standardized by CIE (Commission Internationale de
l’Eclairage, the standards organization for color science)

• Based on three “imaginary” primaries X, Y, and Z

(in math, s = XX + YY + ZZ)

– imaginary = only realizable by spectra that are negative at
some wavelengths

– key properties

• any stimulus can be matched with positive X, Y, and Z

• separates out luminance: X, Z have zero luminance, so Y
tells you the luminance by itself
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Perceptually organized color spaces

• Artists often refer to colors as tints, shades, and tones
of pure pigments

– tint: mixture with white

– shade: mixture with black

– tones: mixture with
black and white

– gray: no color at all
(aka. neutral)

• This seems intuitive

– tints and shades are inherently related to the pure color

• “same” color but lighter, darker, paler, etc.

grays

tints

shades

white

black

pure
color
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Perceptual dimensions of color

• Hue
– the “kind” of color, regardless of attributes

– colorimetric correlate: dominant wavelength

– artist’s correlate: the chosen pigment color

• Saturation
– the “colorfulness”

– colorimetric correlate: purity

– artist’s correlate: fraction of paint from the colored tube

• Lightness (or value)
– the overall amount of light

– colorimetric correlate: luminance

– artist’s correlate: tints are lighter, shades are darker
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Perceptual dimensions: chromaticity

• In x, y, Y (or another
luminance/chromaticity
space), Y corresponds to
lightness

• hue and saturation are
then like polar
coordinates for
chromaticity (starting at
white, which way did you
go and how far?)
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Perceptual dimensions of color

• There’s good evidence (“opponent color theory”) for
a neurological basis for these dimensions

– the brain seems to encode color early on using three axes:

white — black,    red — green,    yellow —!blue

– the white—black axis is lightness; the others determine hue
and saturation

– one piece of evidence: you can have a light green, a dark
green, a yellow-green, or a blue-green, but you can’t have a
reddish green (just doesn’t make sense)

• thus red is the opponent to green

– another piece of evidence: afterimages (recall flag illusion)
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RGB as a 3D space

• A cube:

(demo of RGB color picker)
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Perceptual organization for RGB: HSV

• Uses hue (an angle, 0 to 360), saturation (0 to 1), and
value (0 to 1) as the three coordinates for a color

– the brightest available
RGB colors are those
with one of R,G,B
equal to 1 (top surface)

– each horizontal slice is
the surface of a sub-cube
of the RGB cube [F
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(demo of HSV color pickers)
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Perceptually uniform spaces

• Two major spaces standardized by CIE

– designed so that equal differences in coordinates produce
equally visible differences in color

– LUV: earlier, simpler space; L*, u*, v*

– LAB: more complex but more uniform: L*, a*, b*

– both separate luminance from chromaticity

– including a gamma-like nonlinear component is important


