	Murdoch redux
Colorimetry as Linear Algebra	 RGB colors add as vectors so do primary spectra in additive display (CRT, LCD, etc.) Chromaticity: color ratios (r = R/(R+G+B), etc.) color without regard for overall brightness
CS 465 Lecture 23	 Color matching and metamers any spectrum can be matched by combining 3 primaries metamers: different spectra that look the same CIE colorimetry
	- X, Y, and Z: standardized hypothetical primaries - \overline{x} , \overline{y} , \overline{z} : color matching functions for X, Y, Z
Cornell CS465 Fall 2005 • Lecture 23 © 2005 Steve Mars	rschner • I Cornell CS465 Fall 2005 • Lecture 23 © 2005 Steve Marschner • 2

Approaching color mathematically

- Three distinct ideas relating color values to stimuli
 - Primaries and additive color: R, G, and B tell how much you turn up three primary spectra
 - Sensitivities and color detection: R, G, and B are the outputs of detectors with three sensitivity functions
 - Color matching functions and metamers: R, G, and B are the amounts of three primaries required to match a given spectrum

Math of additive mixing

• Simply add contributions of primaries per wavelength

$$s_a(\lambda) = Rs_r(\lambda) + Gs_g(\lambda) + Bs_b(\lambda)$$

- key property: all wavelengths change by the same scale factor

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 4

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 3

A simple light detector

- Produces a number when photons land on it
 - value depends strictly on the number of photons detected
 - each photon has a probability of being detected that depends on the wavelength
 - (can't distinguish signals caused by different wavelengths)
- This model works for many detectors:
 - based on semiconductors (such as in a digital camera)
 - based on visual photopigments (such as in human eyes)

A simple light detector

Light detection math

- Same math carries over to power distributions
 - spectrum entering the detector is $s(\lambda)$
 - detector has its spectral sensitivity or spectral response, $r(\lambda)$

$$X = \int r(\lambda) s(\lambda) \, d\lambda$$

$$| \qquad |$$
 measured signal input spectrum

detector's sensitivity

Light detection in the eye

- Recall there are three types of cones
 - call them S, M, L for short, medium, long wavelengths
 - eye therefore detects three values from a spectrum, corresponding to three response functions:

$$S = \int r_{S}(\lambda)s(\lambda) d\lambda$$

$$M = \int r_{M}(\lambda)s(\lambda) d\lambda$$

$$L = \int r_{L}(\lambda)s(\lambda) d\lambda$$

$$M = \int r_{L}(\lambda)s(\lambda) d\lambda$$

[Michael Murdoch | Kodak]

Cornell CS465 Fall 2005 • Lecture 23

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 7

© 2005 Steve Marschner • 5

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 8

650 700

nm

Spectra as vectors

- Additive synthesis and detection correspond to basic linear algebra concepts
 - for concreteness, think of spectra as having a finite number of little bands
 - continuous spectrum $s(\lambda)$ becomes discrete spectrum s[i]

Color operations as vector algebra

- Additive display (synthesis):
 - linear combination of spectra:

$$s(\lambda) = Rs_R(\lambda) + Gs_G(\lambda) + Bs_B(\lambda)$$

- is like linear combination of vectors, or matrix multiplication:

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 10

Color operations as vector algebra

- Color detection (analysis):
 - linear measurement of spectra:

$$X = \int r(\lambda) s(\lambda) \, d\lambda$$

- is like a dot product of vectors:

$$\begin{split} X &= \sum_i r[i]s[i] \\ X &= r \cdot s \end{split}$$

Color operations as vector algebra

- Color detection (analysis):
 - three-band linear measurement of spectra corresponds to three dot products, or a matrix multiplication:

$$\begin{bmatrix} S \\ M \\ L \end{bmatrix} = \begin{bmatrix} r_S \cdot s \\ r_M \cdot s \\ r_L \cdot s \end{bmatrix} = \begin{bmatrix} -r_S - - \\ -r_M - - \\ -r_L - \end{bmatrix} \begin{bmatrix} | \\ s \\ | \end{bmatrix}$$

or,

$$V = M_{SML} s.$$

Cornell CS465 Fall 2005 • Lecture 23

Pseudo-geometric interpretation

- A dot product is a projection
- We are projecting a high dimensional vector (a spectrum) onto three vectors
 - differences that are perpendicular to all 3 vectors are not detectable
- For intuition, we can imagine a 3D analog
 - 3D stands in for high-D vectors
 - 2D stands in for 3D
 - Then vision is just projection onto a plane

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 13

Color reproduction

- Have a spectrum s; want to match on RGB monitor
 - "match" means it looks the same
 - any spectrum that projects to the same point in the visual color space is a good reproduction
- Must find a spectrum that the monitor *can* produce that is a metamer of s

Pseudo-geometric interpretation

• The information available to the visual system about a spectrum is three values

CRT display primaries

- Curves determined by phosphor emission properties

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 16

Color reproduction as linear algebra Color matching functions • Goal of reproduction: visual response to s and s_a is • Used like response functions, but give primary weights the same: - e.g. R,G,B color matching functions, dotted with a spectrum, tell how much of a particular R, G, and B are required to $M_{SML}s = M_{SML}s'.$ match the spectrum • Substituting in the expression for s', • Just derived them for a particular display $M_{SML} s = M_{SML} M_{BGB} C$ - also can measure directly $C = (M_{SML}M_{RGB})^{-1}M_{SML}s$ - in fact, from visual experiments we can *only* get color matching functions, not S, M, and L color matching matrix for RGB • Recall previous discussion: CIE XYZ system - standard hypothetical primaries defined only via color matching functions Cornell CS465 Fall 2005 • Lecture 23 © 2005 Steve Marschner • 21 Cornell CS465 Fall 2005 • Lecture 23 © 2005 Steve Marschner • 22 **Color matching in practice Color matching in practice** • In practice, we have color matching functions, not the S. M. and L sensitivities - but any color matching functions are just as good as SML for span of matching colors spectrum s monitor's you can compute the point s' primaries - any colors with the same X, Y, Z values have the same S, M, using any basis for the L values (they have to, because the colors match!) human visual subspace spectrum s (you are just matching the - so in practice color matching is done thus: response to s and s') $C = (M_{XYZ}M_{BGB})^{-1}M_{XYZ}s$ • and the results are the same as with M_{SMI} because any span of visual response color matching matrices span the same space eye's spectral to s and s' response

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 24

functions

Basic colorimetric concepts

- Luminance
 - the overall magnitude of the the visual response to a spectrum (independent of its color)
 - corresponds to the everyday concept "brightness"
 - determined by product of SPD with the *luminous efficiency* function V_{λ} that describes the eye's overall ability to detect light at each wavelength
 - e.g. lamps are optimized to improve their luminous efficiency (tungsten vs. fluorescent vs. sodium vapor)

Cornell CS465 Fall 2005 • Lecture 23

Color spaces

- Need three numbers to specify a color
 - but what three numbers?
 - a color space is an answer to this question
- Common example: monitor RGB
 - define colors by what R, G, B signals will produce them on your monitor
 - (in math, s = RR + GG + BB for some spectra **R**, **G**, **B**)
 - device dependent (depends on gamma, phosphors, gains, ...)
 - therefore if I choose RGB by looking at my monitor and send it to you, you may not see the same color
 - also leaves out some colors (limited gamut), e.g. vivid yellow

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 27

Luminance, mathematically

• Y just has another response curve (like S, M, and L)

 $Y = r_Y \cdot s$

- r_{γ} is really called " V_{λ} "
- V_{λ} is a linear combination of S, M, and L

- Has to be, since it's derived from cone outputs

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 26

Standard color spaces

- Standardized RGB (sRGB)
 - makes a particular monitor RGB standard
 - other color devices simulate that monitor by calibration
 - sRGB is usable as an interchange space; widely adopted today
 - gamut is still limited

A universal color space: XYZ

- Standardized by CIE (*Commission Internationale de l'Eclairage*, the standards organization for color science)
- Based on three "imaginary" primaries X, Y, and Z (in math, s = XX + YY + ZZ)
 - imaginary = only realizable by spectra that are negative at some wavelengths
 - key properties
 - any stimulus can be matched with positive X, Y, and Z
 - separates out luminance: X, Z have zero luminance, so Y tells you the luminance by itself

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 29

Perceptual dimensions of color

- Hue
 - the "kind" of color, regardless of attributes
 - colorimetric correlate: dominant wavelength
 - artist's correlate: the chosen pigment color
- Saturation
 - the "colorfulness"
 - colorimetric correlate: purity
 - artist's correlate: fraction of paint from the colored tube
- Lightness (or value)
 - the overall amount of light
 - colorimetric correlate: luminance
 - artist's correlate: tints are lighter, shades are darker

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 31

Perceptually organized color spaces

- Artists often refer to colors as *tints*, *shades*, and *tones* of pure pigments
 - tint: mixture with white
 - shade: mixture with black
 - tones: mixture with black and white
 - gray: no color at all (aka. neutral)

- This seems intuitive
 - tints and shades are inherently related to the pure color
 - "same" color but lighter, darker, paler, etc.

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 30

Perceptual dimensions: chromaticity

- In x, y, Y (or another luminance/chromaticity space), Y corresponds to lightness
- hue and saturation are then like polar coordinates for chromaticity (starting at white, which way did you go and how far?)

Cornell CS465 Fall 2005 • Lecture 23

Perceptual dimensions of color

- There's good evidence ("opponent color theory") for a neurological basis for these dimensions
 - the brain seems to encode color early on using three axes:
 white black, red green, yellow blue
 - the white—black axis is lightness; the others determine hue and saturation
 - one piece of evidence: you can have a light green, a dark green, a yellow-green, or a blue-green, but you can't have a reddish green (just doesn't make sense)
 - thus red is the opponent to green
 - another piece of evidence: afterimages (recall flag illusion)

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 33

RGB as a 3D space

• A cube:

(demo of RGB color picker)

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 34

Perceptual organization for RGB: HSV

- Uses hue (an angle, 0 to 360), saturation (0 to 1), and value (0 to 1) as the three coordinates for a color
 - the brightest available RGB colors are those with one of R,G,B equal to I (top surface)
 - each horizontal slice is the surface of a sub-cube of the RGB cube

(demo of HSV color pickers)

Perceptually uniform spaces

- Two major spaces standardized by CIE
 - designed so that equal differences in coordinates produce equally visible differences in color
 - LUV: earlier, simpler space; L*, u*, v*
 - LAB: more complex but more uniform: L^* , a^* , b^*
 - both separate luminance from chromaticity
 - including a gamma-like nonlinear component is important

Cornell CS465 Fall 2005 • Lecture 23

© 2005 Steve Marschner • 35

Cornell CS465 Fall 2005 • Lecture 23