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A Iittle quick math background

* Notation for sets, functions, mappings
* Linear and affine transformations
* Matrices

— Matrix-vector multiplication
— Matrix-matrix multiplication

* Implicit vs. explicit geometry
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Implicit representations

* Equation to tell whether we are on the curve
v flv) =0;
 Example: line (orthogonal to u, distance k from 0)
{V ‘ v-u—+ k= O} (U is a unit vector)
 Example: circle (center p, radius r)
2
{viv—-p)-(v—p)—r" =0}
* Always define boundary of region

— (If f1s continuous)
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-xplicit representations

e Also called parametric

* Equation to map domain into plane

Lf(t)|te D}

 Example: line (containing p, parallel to u)
{p+tu|teR}

 Example: circle (center b, radius r)
[p+r[cost sint|! |t €0,27)}
* Like tracing out the path of a particle over time

* Variable tis the “parameter”
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Transtorming seometry

* Move a subset of the plane using a mapping from the plane to
itself

S—{T(v)|veS}

* Parametric representation:

()| te Dy = {T(f(t)|t € Dj}

* Implicit representation:

WIf(v) =0} = {T(v)| f(v) =0}
= {v[f(T(v)) =0}
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Translation

* Simplest transformation: T(V) —v+u
* Inverse: T_l(v) — VvV — u

 Example of transforming circle
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Translation

* Simplest transformation: T(V) —v-+u
* Inverse: T_l(v) — VvV — U

 Example of transforming circle
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| iInear transformations

* One way to define a transformation is by matrix
multiplication:

T(v)=Mv
* Such transformations are linear, which is to say:
T(au+v)=al(u)+T(v)

(and in fact all linear transformations can be written this way)
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Geometry of 2D linear trans.

* 2x2 matrices have simple geometric interpretations

— uniform scale

— non-uniform scale
— rotation

— shear

— reflection

* Reading off the matrix
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Linear transformation gallery

e Uniform scale

S

0

Cornell CS4620 Spring 2017 « Lecture 9

0

S

ST
SY

1.5

0

0
1.5

© 2017 Steve Marschner * 9



Linear transformation gallery

e Nonuniform scale

Sy
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Linear transformation gallery

. Rotation |cos@ —sinf]| [x xcosf —ysinf
sinf)  cost | |y xsinf + ycos 6

0.866 —0.5
0.5 0.866
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Linear transformation gallery

e Reflection

— can consider It a special case
of nonuniform scale _ -
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Linear transformation gallery

e Shear

o
_O 1_

P a,y_
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Composing transformations

* Want to move an object, then move it some more

- p—T(p) — S(I'(p)) = (SoT)(p)
* We need to represent So T (S compose T”)

— and would like to use the same representation as for S and T

* Translation easy
- T(p)=p+ur;S(p) =p+us

(SoT)(p)=p + (ur + us)
* Translation by uT then by uS is translation by uT + uS

— commutative!
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Composing transformations

* Linear transformations also straightforward

- T(p) = Mrp; S(p) = Msp
(S O T)(p) — MsMTp

* Transforming first by Mt then by M¢ is the same as
transforming by McM7
— only sometimes commutative

— e.g. rotations & uniform scales

— e.g. non-uniform scales w/o rotation
— Note MMy, or S o T,is T first, then S
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Combining linear with translation

* Need to use both in single framework
* Can represent arbitrary seq. as T'(p) = Mp + u
- T(p) = Mrp +ur
- S(p) = Msp + us
- (SoT)(p) = Ms(Mrp +ur) + us
= (MsM7)p + (Msur + ug)
- eg 5(1(0)) = S(ur)

* Transforming by Mt and urg, then by M¢ and ug, is the same as
transforming by M¢Mt and ug + Mcut

— This will work but Is a Iittle awkward
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Homogeneous coordinates

* A trick for representing the foregoing more elegantly

 Extra component w for vectors, extra row/column for

matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra row and

column

S O R
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Homogeneous coordinates

* Represent translation using the extra column
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Homogeneous coordinates

 Composition just works, by 3x3 matrix multiplication

-MS ug

0 1

MT ur

0

1

1

P

1

(MsMr)p + (Msur + ug)

* This is exactly the same as carrying around M and u

— but cleaner

— and generalizes In useful ways as we'll see later
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Affine transformations

 The set of transformations we have been looking at is known
as the “affine’” transformations

— straight lines preserved; parallel lines preserved
— ratios of lengths along lines preserved (midpoints preserved)

AN
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Aftine transformation gallery

* Translation _1 0 t:c- _1 0 215-
0 1 t,| |0 1 085
0 0 1 0 0 1
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Translation

x 1 0 0 t,] [z
v [0 1 0 t,] |y
110 0 1 ¢t | |z

1 o 0 0 1] |1
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Translation

x 1 0 0 t,] [z
v [0 1 0 t,] |y
110 0 1 ¢t | |z

1 o 0 0 1] |1
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Translation

x 1 0 0 t,] [z
v [0 1 0 t,] |y
110 0 1 ¢t | |z

1 o 0 0 1] |1
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Translation

x 1 0 0 t,] [z
v [0 1 0 t,] |y
110 0 1 ¢t | |z

1 o 0 0 1] |1
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Aftine transformation gallery
 Uniform scale _S 0 O— _15 0 O-

0
0 0 1 0 0 1
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Aftine transformation gallery

e Nonuniform scale
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Scaling

x’ s, 0 0 0| |z
vl |0 s, 0 0| |y
1 [0 0 s, 0] |z
1 0 0 0 1] [1
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Scaling

x’ s, 0 0 0| |z
vl |0 s, 0 0| |y
1 [0 0 s, 0] |z
1 0 0 0 1] [1
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Scaling

x’ s, 0 0 Of [z
vl |0 s, 0 O] |y
1 [0 0 s, 0] |z
1 0 0 0 1] [1
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Scaling

x’ s, 0 0 Of [z
vl |0 s, 0 O] |y
1 10 0 s, 0] |z

1 1
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Aftine transformation gallery

* Rotation '.ogp _sinf® 0] [0.866 —0.5 0O
sinf cosf O 0.5 0.866 0
0 0 1 0 0 1
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Rotation about Z axis

ik cosf® —sinfd 0 O] [z
y'|  |sinf@ cosf O Of |y
2110 0 1 0] [z
1 0 0 0 1) [1
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Rotation about Z axis

ik cosf® —sinfd 0 O] [z
y'|  |sinf@ cosf O Of |y
2110 0 1 0] |z
1 0 0 0 1) [1
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Rotation about X axis

5% 1 0 0 O [z
y'| |0 cosf —sinf 0] |y
21 10 sin@ cos@ 0| |z
1 0 0 0 L1
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Rotation about X axis

5% 1 0 0 O [z
y'| |0 cosf —sinf 0] |y
21 10 sin@ cos@ 0| |z
1 0 0 0 L1
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Rotation about Y axis
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Rotation about Y axis
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(General Rotation Matrices

* A rotation in 2D is around a point
e A rotation in 3D is around an axis

— so 3D rotation is w.rt a line, not just a point
— there are many more 3D rotations than 2D
—a 3D space around a given point, not just |D

-~

"

convention: positive
rotation 1s CCW

~

J
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~uler angles

* An object can be oriented arbitrarily

* Euler angles: simply compose three coord. axis rotations

—-egxthenythenz R(0,,0,,0,) = R.(0,)R,(0,)R.(0;)
— "heading, attrtude, bank”
(common for airplanes)

— "roll, prtch, yaw"
(common for vehicles)

— "pan, tilt, roll”
(common for cameras)
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~uler angles In applications

Pan Tilt Roll

Ishikawa Watanabe Laboratory

Center of
Gravity

Pitch Axis

+ Pitch

Roll Axis

Yaw Axis
+ Roll
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Aftine transformation gallery

 Reflection 1 0 0

— can consider It a special case 0 1 0
of nonuniform scale
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Aftine transformation gallery

e Shear

o O =
O =
— O

1 a 0O
0O 1 O
_O 0 1_
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Properties of Matrices

* Translations: linear part is the identity
* Scales: linear part is diagonal
* Rotations: linear part is orthogonal

— Columns of R are mutually orthonormal: RR'=R'R=|
— Also, determinant of Ris [.0 [ det(R) = | ]
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General affine transformations

I”

* The previous slides showed “canonica
of affine transformations

examples of the types

* Generally, transformations contain elements of multiple types

— often define them as products of canonical transforms
— sometimes work with their properties more directly
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Composite affine transformations

* In general not commutative: order matters!

rotate, then translate translate, then rotate

Cornell CS4620 Spring 2017 « Lecture 9 © 2017 Steve Marschner * 37



Composite affine transformations

* In general not commutative: order matters!

rotate, then translate translate, then rotate

Cornell CS4620 Spring 2017 « Lecture 9 © 2017 Steve Marschner * 37



Composite affine transformations

* In general not commutative: order matters!

rotate, then translate translate, then rotate

Cornell CS4620 Spring 2017 « Lecture 9 © 2017 Steve Marschner * 37



Composite affine transformations

* In general not commutative: order matters!

rotate, then translate translate, then rotate
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Composite affine transformations

* Another example

A A

scale, then rotate rotate, then scale
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Composite affine transformations

* Another example

scale, then rotate rotate, then scale
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Composite affine transformations

* Another example

scale, then rotate rotate, then scale
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Composite affine transformations

* Another example

scale, then rotate rotate, then scale
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Rigid motions

* A transform made up of only translation and rotation is a rigid
motion or a rigid body transformation

* The linear part is an orthonormal matrix
Q u

R =
0 1

* Inverse of orthonormal matrix is transpose
— so Inverse of rigid motion Is easy:

R—lR _ -QT _QTu- Q u
0 1
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Composing to change axes

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin

— 5o translate that point to the origin

A

M =T 'RT
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Composing to change axes
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A
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R R
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Composing to change axes

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin

— 5o translate that point to the origin

t M =T 'RT

A
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Composing to change axes

* Want to scale along a particular axis and point

* Know how to scale along the y axis at the origin

— 5o translate to the origin and rotate to align axes

S

M=T"'R'SRT
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Composing to change axes

* Want to scale along a particular axis and point
* Know how to scale along the y axis at the origin

— 5o translate to the origin and rotate to align axes

M=T"'R'SRT

5 .
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Transtorming points and vectors

* Recall distinction points vs. vectors

— vectors are just offsets (differences between points)

— points have a location

— represented by vector offset from a fixed origin

* Points and vectors transform differently

— points respond to translation; vectors do not

vV=p—(q

T(x)=Mx+t

T(p—q)=Mp

t - (Mq

t)

=M(p—q)+(t—t)=Mv
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Transtorming points and vectors

* Homogeneous coords. let us exclude translation

— Just put O rather than | In the last place

M t] [p
o' 1] |1

_Mp—l—t_

1

ST

_OT 1_

v
0

Mv
0

— and note that subtracting two points cancels the extra coordinate,

resulting In a vector!

* Preview: projective transformations

— what's really going on with this last coordinate!

— think of R embedded in R3: all affine xfs. preserve z=1 plane

— could have other transforms; project back to z=|
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Transtorming normal vectors

* Transforming surface normals

— differences of points (and therefore tangents) transform OK
— normals do not; therefore use inverse transpose matrix

()

have: t - n=t'n=0

want: Mt-Xn=t"M"Xn=0

soset X = (M1)~1

then: Mt- Xn=t'MI' (M) n=tIn=0
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More math background

 Coordinate systems

— Expressing vectors with respect to bases
— Linear transformations as changes of basis

Cornell CS4620 Spring 2017 « Lecture 9 © 2017 Steve Marschner * 45



Affine change of coorc

* Six degrees of freedom

a1 as as
a4 d5 A4g
0O 0 1
A
5
& B
0 e
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Aftine change of coordinates

 Coordinate frame: point plus basis

* Interpretation: transformation

changes representation of u
point from one basis to another

e “Frame to canonical’” matrix has
frame in columns

— takes points represented in frame

>
1_

u v
— represents them in canonical basis 0 O
~eg[00][1 010 1] '
* Seems backward but bears thinking about
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Aftine change of coordinates

* A new way to “read off”’ the matrix

— e.g. shear from earlier 1 05 0
— can look at picture, see effect 0 1 0
on basis vectors, write 0O 0 1

down matrix
* Also an easy way to construct transforms

— e.g.scale by 2 across direction (1,2)
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Aftine change of coordinates

* When we move an object to the canonical frame to apply a
transformation, we are changing coordinates

— the transformation is easy to express in object’s frame
— so define It there and transform it

T, = FTpF~1

— T, 1s the transformation expressed wrt. {e|, e}

— TF is the transformation expressed in natural frame

— F is the frame-to-canonical matrix [u v p]

* This is a similarity transformation
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Coordinate frame summary

* Frame = point plus basis

* Frame matrix (frame-to-canonical) is

F =

v p_

0 0 1

* Move points to and from frame by multiplying with F

pe = Fpr pr=F'p,

* Move transformations using similarity transforms

le = FIpF™
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Building transforms from points

* 2D affine transformation has 6 degrees of freedom (DOFs)

— this is the number of "knobs” we have to set to define one

e So, 6 constraints suffice to define the transformation

— handy kind of constraint: point p maps to point q (2 constraints at once)

— three point constraints add up to constrain all 6 DOFs
(.e. can map any triangle to any other triangle)

* 3D affine transformation has |2 degrees of freedom

— count them from the matrix entries we're allowed to change

e So, |2 constraints suffice to define the transformation

— In 3D, this is 4 point constraints
(l.e. can map any tetrahedron to any other tetrahedron)
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