
CS 4620 Lecture 9

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Geometric Transformations

1

• Notation for sets, functions, mappings

• Linear and affine transformations

• Matrices

– Matrix-vector multiplication
– Matrix-matrix multiplication

• Implicit vs. explicit geometry

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

A little quick math background

2

• Equation to tell whether we are on the curve

• Example: line (orthogonal to u, distance k from 0)

• Example: circle (center p, radius r)

• Always define boundary of region

– (if f is continuous)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Implicit representations

3

(u is a unit vector)

{v | (v � p) · (v � p)� r2 = 0}

• Also called parametric

• Equation to map domain into plane

• Example: line (containing p, parallel to u)

• Example: circle (center b, radius r)

• Like tracing out the path of a particle over time

• Variable t is the “parameter”

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Explicit representations

4

• Move a subset of the plane using a mapping from the plane to
itself

• Parametric representation:

• Implicit representation:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Transforming geometry

5

• Simplest transformation:

• Inverse:

• Example of transforming circle

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Translation

6

• Simplest transformation:

• Inverse:

• Example of transforming circle

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Translation

6

• One way to define a transformation is by matrix
multiplication:

• Such transformations are linear, which is to say:

(and in fact all linear transformations can be written this way)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Linear transformations

7

• 2x2 matrices have simple geometric interpretations

– uniform scale
– non-uniform scale
– rotation
– shear
– reflection

• Reading off the matrix

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Geometry of 2D linear trans.

8

• Uniform scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Linear transformation gallery

9

• Nonuniform scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Linear transformation gallery

10

• Rotation

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Linear transformation gallery

11

0.866 �0.5
0.5 0.866

�

• Reflection

– can consider it a special case 
of nonuniform scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Linear transformation gallery

12

• Shear

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Linear transformation gallery

13

• Want to move an object, then move it some more

–
• We need to represent S o T (“S compose T”)

– and would like to use the same representation as for S and T
• Translation easy

–

• Translation by uT then by uS is translation by uT + uS

– commutative!

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing transformations

14

• Linear transformations also straightforward

–

• Transforming first by MT then by MS is the same as

transforming by MSMT

– only sometimes commutative
– e.g. rotations & uniform scales
– e.g. non-uniform scales w/o rotation

– Note MSMT, or S o T, is T first, then S

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing transformations

15

• Need to use both in single framework

• Can represent arbitrary seq. as

–
–
–  

– e. g.

• Transforming by MT and uT, then by MS and uS, is the same as

transforming by MSMT and uS + MSuT

– This will work but is a little awkward
© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Combining linear with translation

16

• A trick for representing the foregoing more elegantly

• Extra component w for vectors, extra row/column for
matrices

– for affine, can always keep w = 1
• Represent linear transformations with dummy extra row and

column

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Homogeneous coordinates

17

• Represent translation using the extra column

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Homogeneous coordinates

18

• Composition just works, by 3x3 matrix multiplication

• This is exactly the same as carrying around M and u

– but cleaner
– and generalizes in useful ways as we’ll see later

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Homogeneous coordinates

19

• The set of transformations we have been looking at is known
as the “affine” transformations

– straight lines preserved; parallel lines preserved
– ratios of lengths along lines preserved (midpoints preserved)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformations

20

• Translation

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformation gallery

21

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Translation

22

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Translation

22

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Translation

22

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Translation

22

• Uniform scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformation gallery

23

• Nonuniform scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformation gallery

24

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Scaling

25

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Scaling

25

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Scaling

25

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Scaling

25

• Rotation

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformation gallery

26

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rotation about z axis

27

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rotation about z axis

27

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rotation about x axis

28

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rotation about x axis

28

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rotation about y axis

29

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rotation about y axis

29

• A rotation in 2D is around a point

• A rotation in 3D is around an axis

– so 3D rotation is w.r.t a line, not just a point
– there are many more 3D rotations than 2D

– a 3D space around a given point, not just 1D

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

2D 3D

General Rotation Matrices

30

convention: positive
rotation is CCW

when axis vector is
pointing at you

convention: positive
rotation is CCW

• An object can be oriented arbitrarily

• Euler angles: simply compose three coord. axis rotations

– e.g. x, then y, then z:
– “heading, attitude, bank” 

(common for airplanes)
– “roll, pitch, yaw”  

(common for vehicles)
– “pan, tilt, roll” 

(common for cameras)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Euler angles

31

R(✓
x

, ✓
y

, ✓
z

) = R
z

(✓
z

)R
y

(✓
y

)R
x

(✓
x

)

• An object can be oriented arbitrarily

• Euler angles: simply compose three coord. axis rotations

– e.g. x, then y, then z:
– “heading, attitude, bank” 

(common for airplanes)
– “roll, pitch, yaw”  

(common for vehicles)
– “pan, tilt, roll” 

(common for cameras)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Euler angles

31

R(✓
x

, ✓
y

, ✓
z

) = R
z

(✓
z

)R
y

(✓
y

)R
x

(✓
x

)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Euler angles in applications

32
Ish

ika
w

a W
at

an
ab

e
La

bo
ra

to
ry

W
iki

pe
di

a

• Reflection

– can consider it a special case 
of nonuniform scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformation gallery

33

• Shear

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine transformation gallery

34

• Translations: linear part is the identity

• Scales: linear part is diagonal

• Rotations: linear part is orthogonal

– Columns of R are mutually orthonormal: RRT=RTR=I
– Also, determinant of R is 1.0 [det(R) = 1]

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Properties of Matrices

35

• The previous slides showed “canonical” examples of the types
of affine transformations

• Generally, transformations contain elements of multiple types

– often define them as products of canonical transforms
– sometimes work with their properties more directly

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

General affine transformations

36

• In general not commutative: order matters!

rotate, then translate translate, then rotate

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

37

• In general not commutative: order matters!

rotate, then translate translate, then rotate

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

37

• In general not commutative: order matters!

rotate, then translate translate, then rotate

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

37

• In general not commutative: order matters!

rotate, then translate translate, then rotate

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

37

• Another example

scale, then rotate rotate, then scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

38

• Another example

scale, then rotate rotate, then scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

38

• Another example

scale, then rotate rotate, then scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

38

• Another example

scale, then rotate rotate, then scale

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composite affine transformations

38

• A transform made up of only translation and rotation is a rigid
motion or a rigid body transformation

• The linear part is an orthonormal matrix

• Inverse of orthonormal matrix is transpose

– so inverse of rigid motion is easy:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Rigid motions

39

• Want to rotate about a particular point

– could work out formulas directly…
• Know how to rotate about the origin

– so translate that point to the origin

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

40

• Want to rotate about a particular point

– could work out formulas directly…
• Know how to rotate about the origin

– so translate that point to the origin

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

40

• Want to rotate about a particular point

– could work out formulas directly…
• Know how to rotate about the origin

– so translate that point to the origin

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

40

• Want to rotate about a particular point

– could work out formulas directly…
• Know how to rotate about the origin

– so translate that point to the origin

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

40

• Want to scale along a particular axis and point

• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

41

• Want to scale along a particular axis and point

• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

41

• Want to scale along a particular axis and point

• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

41

• Want to scale along a particular axis and point

• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

41

• Want to scale along a particular axis and point

• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

41

• Want to scale along a particular axis and point

• Know how to scale along the y axis at the origin

– so translate to the origin and rotate to align axes

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Composing to change axes

41

• Recall distinction points vs. vectors

– vectors are just offsets (differences between points)
– points have a location

– represented by vector offset from a fixed origin
• Points and vectors transform differently

– points respond to translation; vectors do not

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Transforming points and vectors

42

• Homogeneous coords. let us exclude translation

– just put 0 rather than 1 in the last place

– and note that subtracting two points cancels the extra coordinate,
resulting in a vector!

• Preview: projective transformations

– what’s really going on with this last coordinate?
– think of R2 embedded in R3: all affine xfs. preserve z=1 plane
– could have other transforms; project back to z=1

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Transforming points and vectors

43

• Transforming surface normals

– differences of points (and therefore tangents) transform OK
– normals do not; therefore use inverse transpose matrix

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Transforming normal vectors

44

• Transforming surface normals

– differences of points (and therefore tangents) transform OK
– normals do not; therefore use inverse transpose matrix

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Transforming normal vectors

44

• Coordinate systems

– Expressing vectors with respect to bases
– Linear transformations as changes of basis

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

More math background

45

• Six degrees of freedom

or

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine change of coordinates

46

• Coordinate frame: point plus basis

• Interpretation: transformation  
changes representation of  
point from one basis to another

• “Frame to canonical” matrix has  
frame in columns

– takes points represented in frame
– represents them in canonical basis
– e.g. [0 0], [1 0], [0 1]

• Seems backward but bears thinking about

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine change of coordinates

47

• A new way to “read off” the matrix

– e.g. shear from earlier
– can look at picture, see effect 

on basis vectors, write  
down matrix

• Also an easy way to construct transforms

– e. g. scale by 2 across direction (1,2)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine change of coordinates

48

• When we move an object to the canonical frame to apply a
transformation, we are changing coordinates

– the transformation is easy to express in object’s frame
– so define it there and transform it

– Te is the transformation expressed wrt. {e1, e2}

– TF is the transformation expressed in natural frame
– F is the frame-to-canonical matrix [u v p]

• This is a similarity transformation

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Affine change of coordinates

49

• Frame = point plus basis

• Frame matrix (frame-to-canonical) is

• Move points to and from frame by multiplying with F

• Move transformations using similarity transforms

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Coordinate frame summary

50

• 2D affine transformation has 6 degrees of freedom (DOFs)

– this is the number of “knobs” we have to set to define one
• So, 6 constraints suffice to define the transformation

– handy kind of constraint: point p maps to point q (2 constraints at once)
– three point constraints add up to constrain all 6 DOFs 

(i.e. can map any triangle to any other triangle)
• 3D affine transformation has 12 degrees of freedom

– count them from the matrix entries we’re allowed to change
• So, 12 constraints suffice to define the transformation

– in 3D, this is 4 point constraints  
(i.e. can map any tetrahedron to any other tetrahedron)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Building transforms from points

51

