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Geometric Transformations
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• Notation for sets, functions, mappings 

• Linear and affine transformations 

• Matrices 

– Matrix-vector multiplication
– Matrix-matrix multiplication

• Implicit vs. explicit geometry
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A little quick math background
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• Equation to tell whether we are on the curve 

 
• Example: line (orthogonal to u, distance k from 0) 

 

• Example: circle (center p, radius r) 

 

• Always define boundary of region  

– (if f is continuous)
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Implicit representations
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(u is a unit vector)

{v | (v � p) · (v � p)� r2 = 0}



• Also called parametric 

• Equation to map domain into plane 

 

• Example: line (containing p, parallel to u) 

 

• Example: circle (center b, radius r) 

 

• Like tracing out the path of a particle over time 

• Variable t is the “parameter”
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Explicit representations
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• Move a subset of the plane using a mapping from the plane to 
itself 

 

• Parametric representation: 

 

• Implicit representation: 
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Transforming geometry
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• Simplest transformation:  

• Inverse: 

• Example of transforming circle
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Translation
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• Simplest transformation:  

• Inverse: 

• Example of transforming circle
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Translation
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• One way to define a transformation is by matrix 
multiplication: 

 

• Such transformations are linear, which is to say: 

 

(and in fact all linear transformations can be written this way)
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Linear transformations
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• 2x2 matrices have simple geometric interpretations 

– uniform scale
– non-uniform scale
– rotation
– shear
– reflection

• Reading off the matrix
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Geometry of 2D linear trans.
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• Uniform scale
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Linear transformation gallery
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• Nonuniform scale
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Linear transformation gallery
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• Rotation
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Linear transformation gallery
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• Reflection 

– can consider it a special case 
of nonuniform scale
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Linear transformation gallery
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• Shear
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Linear transformation gallery
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• Want to move an object, then move it some more 

–  
• We need to represent S o T (“S compose T”) 

– and would like to use the same representation as for S and T
• Translation easy 

–  

• Translation by uT then by uS is translation by uT + uS 

– commutative!
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Composing transformations
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• Linear transformations also straightforward 

–  

• Transforming first by MT then by MS is the same as 

transforming by MSMT

– only sometimes commutative
– e.g. rotations & uniform scales
– e.g. non-uniform scales w/o rotation

– Note MSMT, or S o T, is T first, then S
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Composing transformations
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• Need to use both in single framework 

• Can represent arbitrary seq. as  

–  
–  
–   

– e. g. 

• Transforming by MT and uT, then by MS and uS, is the same as 

transforming by MSMT and uS + MSuT

– This will work but is a little awkward
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Combining linear with translation
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• A trick for representing the foregoing more elegantly 

• Extra component w for vectors, extra row/column for 
matrices 

– for affine, can always keep w = 1
• Represent linear transformations with dummy extra row and 

column
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Homogeneous coordinates
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• Represent translation using the extra column
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Homogeneous coordinates
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• Composition just works, by 3x3 matrix multiplication 

• This is exactly the same as carrying around M and u  

– but cleaner
– and generalizes in useful ways as we’ll see later
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Homogeneous coordinates
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• The set of transformations we have been looking at is known 
as the “affine” transformations 

– straight lines preserved; parallel lines preserved
– ratios of lengths along lines preserved (midpoints preserved)
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Affine transformations
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• Translation
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Affine transformation gallery
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Translation
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Translation
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Translation
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Translation
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• Uniform scale
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Affine transformation gallery
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• Nonuniform scale
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Affine transformation gallery
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Scaling
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Scaling
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Scaling
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Scaling
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• Rotation
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Affine transformation gallery
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Rotation about z axis
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Rotation about z axis
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Rotation about x axis
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Rotation about x axis
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Rotation about y axis
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Rotation about y axis
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• A rotation in 2D is around a point 

• A rotation in 3D is around an axis 

– so 3D rotation is w.r.t a line, not just a point
– there are many more 3D rotations than 2D

– a 3D space around a given point, not just 1D
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2D 3D

General Rotation Matrices
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convention: positive 
rotation is CCW 

when axis vector is 
pointing at you

convention: positive 
rotation is CCW



• An object can be oriented arbitrarily 

• Euler angles: simply compose three coord. axis rotations 

– e.g. x, then y, then z: 
– “heading, attitude, bank” 

(common for airplanes)
– “roll, pitch, yaw”  

(common for vehicles)
– “pan, tilt, roll” 

(common for cameras)
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Euler angles

31

R(✓
x

, ✓
y

, ✓
z

) = R
z

(✓
z

)R
y

(✓
y

)R
x

(✓
x

)



• An object can be oriented arbitrarily 

• Euler angles: simply compose three coord. axis rotations 

– e.g. x, then y, then z: 
– “heading, attitude, bank” 

(common for airplanes)
– “roll, pitch, yaw”  

(common for vehicles)
– “pan, tilt, roll” 

(common for cameras)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Euler angles
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Euler angles in applications
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• Reflection 

– can consider it a special case 
of nonuniform scale
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Affine transformation gallery
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• Shear
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Affine transformation gallery
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• Translations: linear part is the identity 

• Scales: linear part is diagonal 

• Rotations: linear part is orthogonal 

– Columns of R are mutually orthonormal:  RRT=RTR=I
– Also, determinant of R is 1.0  [ det(R) = 1 ]
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Properties of Matrices
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• The previous slides showed “canonical” examples of the types 
of affine transformations 

• Generally, transformations contain elements of multiple types 

– often define them as products of canonical transforms
– sometimes work with their properties more directly
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General affine transformations
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• In general not commutative: order matters!

rotate, then translate translate, then rotate
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Composite affine transformations
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Composite affine transformations
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Composite affine transformations
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• In general not commutative: order matters!

rotate, then translate translate, then rotate
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Composite affine transformations
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• Another example

scale, then rotate rotate, then scale
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Composite affine transformations
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Composite affine transformations

38



• Another example
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Composite affine transformations
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• Another example

scale, then rotate rotate, then scale
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Composite affine transformations

38



• A transform made up of only translation and rotation is a rigid 
motion or a rigid body transformation

• The linear part is an orthonormal matrix 

• Inverse of orthonormal matrix is transpose 

– so inverse of rigid motion is easy:
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Rigid motions
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• Want to rotate about a particular point 

– could work out formulas directly…
• Know how to rotate about the origin 

– so translate that point to the origin
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Composing to change axes
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Composing to change axes
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• Want to scale along a particular axis and point 

• Know how to scale along the y axis at the origin 

– so translate to the origin and rotate to align axes
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Composing to change axes
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• Want to scale along a particular axis and point 

• Know how to scale along the y axis at the origin 
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Composing to change axes
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Composing to change axes
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Composing to change axes
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Composing to change axes
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• Want to scale along a particular axis and point 
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Composing to change axes
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• Recall distinction points vs. vectors 

– vectors are just offsets (differences between points)
– points have a location

– represented by vector offset from a fixed origin
• Points and vectors transform differently 

– points respond to translation; vectors do not

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Transforming points and vectors
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• Homogeneous coords. let us exclude translation 

– just put 0 rather than 1 in the last place

– and note that subtracting two points cancels the extra coordinate, 
resulting in a vector!

• Preview: projective transformations 

– what’s really going on with this last coordinate?
– think of R2 embedded in R3: all affine xfs. preserve z=1 plane
– could have other transforms; project back to z=1
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Transforming points and vectors
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• Transforming surface normals 

– differences of points (and therefore tangents) transform OK
– normals do not; therefore use inverse transpose matrix
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Transforming normal vectors
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• Transforming surface normals 

– differences of points (and therefore tangents) transform OK
– normals do not; therefore use inverse transpose matrix
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Transforming normal vectors
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• Coordinate systems 

– Expressing vectors with respect to bases
– Linear transformations as changes of basis
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More math background
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• Six degrees of freedom

or
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Affine change of coordinates
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• Coordinate frame: point plus basis 

• Interpretation: transformation  
changes representation of  
point from one basis to another 

• “Frame to canonical” matrix has  
frame in columns 

– takes points represented in frame
– represents them in canonical basis
– e.g. [0 0], [1 0], [0 1]

• Seems backward but bears thinking about
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Affine change of coordinates
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• A new way to “read off” the matrix 

– e.g. shear from earlier
– can look at picture, see effect 

on basis vectors, write  
down matrix

• Also an easy way to construct transforms 

– e. g. scale by 2 across direction (1,2)
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Affine change of coordinates
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• When we move an object to the canonical frame to apply a 
transformation, we are changing coordinates 

– the transformation is easy to express in object’s frame
– so define it there and transform it

– Te is the transformation expressed wrt. {e1, e2}

– TF is the transformation expressed in natural frame
– F is the frame-to-canonical matrix [u v p]

• This is a similarity transformation
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Affine change of coordinates
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• Frame = point plus basis 

• Frame matrix (frame-to-canonical) is 

• Move points to and from frame by multiplying with F

• Move transformations using similarity transforms
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Coordinate frame summary
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• 2D affine transformation has 6 degrees of freedom (DOFs) 

– this is the number of “knobs” we have to set to define one
• So, 6 constraints suffice to define the transformation 

– handy kind of constraint: point p maps to point q (2 constraints at once)
– three point constraints add up to constrain all 6 DOFs 

(i.e. can map any triangle to any other triangle)
• 3D affine transformation has 12 degrees of freedom 

– count them from the matrix entries we’re allowed to change
• So, 12 constraints suffice to define the transformation 

– in 3D, this is 4 point constraints  
(i.e. can map any tetrahedron to any other tetrahedron)
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Building transforms from points
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