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CS4620/5620: Lecture 37

Ray Tracing
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Announcements

• Review session 
– Tuesday 7-9, Phillips 101

• Posted notes on slerp and perspective-correct texturing

• Prelim on Thu in B17 at 7:30pm
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Basic ray tracing

• Basic ray tracer: one sample for everything
– one ray per pixel
– one shadow ray for every point light
– one reflection ray per intersection

• one refraction ray (if necessary) per intersection 

• Many advanced methods build on the basic ray tracing 
paradigm
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Soft shadows
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Creating soft shadows
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Glossy reflection
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Cause of glossy reflection

smooth surfaces produce sharp reflections
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Cause of glossy reflection

rough surfaces produce soft (glossy) reflections
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Creating glossy reflections

• Jitter the reflected rays
– Not exactly in mirror direction; add a random offset
– Can work out math to match Phong exactly
– Can do this by jittering the normal if you want
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Creating glossy reflections
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Depth of field
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Cause of focusing effects

point aperture produces always-sharp focus
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Cause of focusing effects

what lenses do (roughly)
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Cause of focusing effects

finite aperture produces limited depth of field
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Depth of field

• Make eye rays start at random points on aperture
– always going toward a point on the focus plane
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Motion blur
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Cause of motion blur
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Motion blur

• Caused by finite shutter times
• Introduce time as a variable throughout the system

– object are hit by rays according to their position at a given time

• Then generate rays with times distributed over shutter 
interval
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Generating a full ray tracer

• A complicated question in general
• Basic idea: start with random points in a square
• Monte Carlo methods—see 600-level graphics courses

19

© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 37 20



© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 37 21

© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 37

How to make ray tracing fast?

• Ray tracing is typically slow
– Ray tracers spend most of their time in ray-surface intersection 

methods

• Ways to improve speed
– Make intersection methods more efficient

• Yes, good idea.  But only gets you so far
– Call intersection methods fewer times

• Intersecting every ray with every object is wasteful
• Basic strategy: efficiently find big chunks of geometry that 
definitely do not intersect a ray

22



© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 37

Bounding volumes

• Quick way to avoid intersections: bound object with a 
simple volume
– Object is fully contained in the volume
– If it doesn’t hit the volume, it doesn’t hit the object
– So test bvol first, then test object if it hits
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Implementing bounding volume

• Just add new Surface subclass, “BoundedSurface”
– Contains a bounding volume and a reference to a surface
– Intersection method:

• Intersect with bvol, return false for miss
• Return surface.intersect(ray)

– Like transformations, common to merge with group
– This change is transparent to the renderer (only it might run 

faster)

• Note that all Surfaces will need to be able to supply 
bounding volumes for themselves
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Bounding volumes

• Cost: more for hits and near misses, less for far misses
• Worth doing?  It depends:

– Cost of bvol intersection test should be small
• Therefore use simple shapes (spheres, boxes, …)

– Cost of object intersect test should be large
• Bvols most useful for complex objects

– Tightness of fit should be good
• Loose fit leads to extra object intersections
• Tradeoff between tightness and bvol intersection cost
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If it’s worth doing, it’s worth doing 
hierarchically!

• Bvols around objects may help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Leads to the idea of using bounding volumes all the way 

from the whole scene down to groups of a few objects

26



© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 37

Implementing a bvol hierarchy

• A BoundedSurface can contain a list of Surfaces
• Some of those Surfaces might be more BoundedSurfaces
• Voilà! A bounding volume hierarchy

– And it’s all still transparent to the renderer
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BVH construction example
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BVH ray-tracing example
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• Trace rays with root node
• If intersection, trace rays with ALL children
• (If no intersection, eliminate tests with all children)
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Choice of bounding volumes

• Spheres -- easy to intersect, not always so tight
• Axis-aligned bounding boxes (AABBs) -- easy to intersect, 

often tighter (esp. for axis-aligned models)
• Oriented bounding boxes (OBBs) -- easy to intersect (but 

cost of transformation), tighter for arbitrary objects
• Computing the bvols

– For primitives -- generally pretty easy
– For groups -- not so easy for OBBs (to do well)
– For transformed surfaces -- not so easy for spheres
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Axis aligned bounding boxes

• Probably easiest to implement
• Computing for primitives

– Cube: duh!
– Sphere, cylinder, etc.: pretty obvious
– Groups or meshes: min/max of component parts

• How to intersect them
– Treat them as an intersection of slabs (see Shirley)
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Building a hierarchy

• Can do it top down or bottom up

• Top down
– Make bbox for whole scene, then split into parts

• Recurse on parts
• Stop when there are just a few objects in your box

– Or if you are too deep (say max depth = 24)
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Building a hierarchy

• How to partition?
– Practical: partition along axis

• Center partition
–Simple
–Unbalanced tree

• Median partition
–More expensive
–More balanced tree

• Objects that cross the median partition
– Pick one of the sides to put the object on
– Expand the bbox to cover that object
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Construction Possibility 1
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Construction Possibility 2
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Hierarchical Data Structures

• From O(N) to O(log N)
– Cluster objects hierarchically
– Single intersection might eliminate cluster

• Bounding volume hierarchy

• Space subdivision
– Octree
– Kd-tree
– Uniform
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Regular space subdivision

• An entirely different approach: uniform grid of cells
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Non-regular space subdivision

• k-d Tree
– subdivides space, like grid
– adaptive, like BVH
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Implementing acceleration structures 

• Conceptually simple to build acceleration structure into 
scene structure

• Better engineering decision to separate them
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