CS4620/5620: Lecture 37

Ray Tracing

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala |

(with previous instructors James/Marschner)

Announcements

* Review session
— Tuesday 7-9, Phillips 101

* Posted notes on slerp and perspective-correct texturing

* Prelim onThu in BI7 at 7:30pm

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala = 2

(with previous instructors James/Marschner)

Basic ray tracing

* Basic ray tracer: one sample for everything
—one ray per pixel
—one shadow ray for every point light
—one reflection ray per intersection
* one refraction ray (if necessary) per intersection

* Many advanced methods build on the basic ray tracing
paradigm

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala = 3

(with previous instructors James/Marschner)

Soft shadows

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala = 4

(with previous instructors James/Marschner)

Creating soft shadows

Cornell CS4620/5620 Fall 2012 « Lecture 37

rea
light

Figure 13.13. Left: an area light can be approximated by some number of point lights; four
of the nine points are visible to p so it is in the penumbra. Right: a random point on the light
is chosen for the shadow ray, and it has some chance of hitting the light or not.

© 2012 Kavita Bala *« 5

(with previous instructors James/Marschner)

Glossy reflection

Cornell CS4620/5620 Fall 2012 « Lecture 37

© 2012 Kavita Bala *

(with previous instructors James/Marschner)

[Lafortune et al. 97]

6

Cause of glossy reflection

single reflected ray

Bl

smooth surface; single normal

smooth surfaces produce sharp reflections

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20|2 Kawta Bala « 7

(with previous instructors James/Marschner)

Cause of glossy reflection

(cone of reflected rays

— L rough surface; many normals

rough surfaces produce soft (glossy) reflections

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20|2 Kawta Bala + 8

(with previous instructors James/Marschner)

Creating glossy reflections

* Jitter the reflected rays
—Not exactly in mirror direction; add a random offset
—Can work out math to match Phong exactly
—Can do this by jittering the normal if you want

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala = 9

(with previous instructors James/Marschner)

Creating glossy reflections

To choose r/, we again sample a random square. This square is perpendicular
to r and has width @ which controls the degree of blur. We can set up the square’s
orientation by creating an orthonormal basis with w = r using the techniques in
Section 2.4.6. Then, we create a random point in the 2D square with side length
a centered at the origin. If we have 2D sample points (£,£') € [0, 1], then the
analogous point on the desired square is

u:—%+§a,

_ 0
v = 2—}—5@.

Figure 13.18. The re- Because the square over which we will perturb is parallel to both the u and v
flection ray is perturbed to vectors, the ray r’ is just

a random vector r’.
r =r+uu+ov.

Note that r’ is not necessarily a unit vector and should be normalized if your code
requires that for ray directions.

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala « 10

(with previous instructors James/Marschner)

Depth of field

© 2012 Kavita Bala * 11

(with previous instructors James/Marschner)

Cornell CS4620/5620 Fall 2012 « Lecture 37

lens

Cause of focusing effects

plane

Figure 13.15. The lens
averages over a cone of
directions that hit the pixel
location being sampled.

single object

. . oints
point camera single rays P

e I
= (’%

points

point aperture produces always-sharp focus

© 2012 Kavita Bala * 12

(with previous instructors James/Marschner)

Cornell CS4620/5620 Fall 2012 « Lecture 37

Cause of focusing effects

lens

, object point
e A;/

point
“chief

1]

ray

what lenses do (roughly)

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20|2 Kawta Bala * I3

(with previous instructors James/Marschner)

Cause of focusing effects

many object
points (out of focus)

finite aperture cones of rays ' (

=

single image
points

single
object point 7
(in focus) focus
plane

finite aperture produces limited depth of field

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20|2 Kawta Bala * 14

(with previous instructors James/Marschner)

Depth of field

* Make eye rays start at random points on aperture
—always going toward a point on the focus plane

2

Figure 13.17. To create
depth-of-field effects, the
eye is randomly selected
from a square region.

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * I5

(with previous instructors James/Marschner)

Motion blur

[Cook, Porter, Carpenter 1984]

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 16

(with previous instructors James/Marschner)

Cause of motion blur

moving
object
A >

single Al
. e {
image
point . .

image point sees

different object points
at different times
Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala « 17
(with previous instructors James/Marschner)

Motion blur

» Caused by finite shutter times
* Introduce time as a variable throughout the system
—object are hit by rays according to their position at a given time

* Then generate rays with times distributed over shutter
interval

T =Ty + &1 — Tp)

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala « 18
(with previous instructors James/Marschner)

Generating a full ray tracer

* A complicated question in general
* Basic idea: start with random points in a square
* Monte Carlo methods—see 600-level graphics courses

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 19

(with previous instructors James/Marschner)

=

Roulette Tableau

Polygons: 151,752 Polygons: 630,843
Light Points: 23,000 Light Points: 13,000
Gather Points: 306 Gather Points: 180
Gather/Light Pairs: 7,047,430 Gather/Light Pairs: 234,000
Cut Size: 174 (0.002%) Cut Size: 447 (0.2%)

model courtesy of Martin Lubich, www.loramel.net

How to make ray tracing fast?

* Ray tracing is typically slow

—Ray tracers spend most of their time in ray-surface intersection
methods

* Ways to improve speed
—Make intersection methods more efficient
* Yes, good idea. But only gets you so far
— Call intersection methods fewer times
* Intersecting every ray with every object is wasteful

* Basic strategy: efficiently find big chunks of geometry that
definitely do not intersect a ray

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala * 22

(with previous instructors James/Marschner)

Bounding volumes

* Quick way to avoid intersections: bound object with a
simple volume
—Object is fully contained in the volume
—If it doesn’t hit the volume, it doesn’t hit the object
—So test bvol first, then test object if it hits

[Glassner 89, Fig 4.5]

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala « 23

(with previous instructors James/Marschner)

Implementing bounding volume

* Just add new Surface subclass, “BoundedSurface”
— Contains a bounding volume and a reference to a surface
—Intersection method:
* Intersect with bvol, return false for miss
* Return surface.intersect(ray)
— Like transformations, common to merge with group
— This change is transparent to the renderer (only it might run
faster)

* Note that all Surfaces will need to be able to supply
bounding volumes for themselves

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 24

(with previous instructors James/Marschner)

Bounding volumes

* Cost: more for hits and near misses, less for far misses

* Worth doing? It depends:

— Cost of bvol intersection test should be small
* Therefore use simple shapes (spheres, boxes, ...)

— Cost of object intersect test should be large
* Bvols most useful for complex objects

— Tightness of fit should be good
* Loose fit leads to extra object intersections
* Tradeoff between tightness and bvol intersection cost

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala * 25
(with previous instructors James/Marschner)

If it’s worth doing, it’s worth doing
hierarchically!

* Bvols around objects may help
* Bvols around groups of objects will help
* Bvols around parts of complex objects will help

* Leads to the idea of using bounding volumes all the way
from the whole scene down to groups of a few objects

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala * 26
(with previous instructors James/Marschner)

Implementing a bvol hierarchy

* A BoundedSurface can contain a list of Surfaces
* Some of those Surfaces might be more BoundedSurfaces

* Voila! A bounding volume hierarchy
—And it’s all still transparent to the renderer

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala « 27
(with previous instructors James/Marschner)

BVH construction example

d D
- »

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala « 28
(with previous instructors James/Marschner)

BVH ray-tracing example

A

A

»

»

* Trace rays with root node

* If intersection, trace rays with ALL children

* (If no intersection, eliminate tests with all children)

Cornell CS4620/5620 Fall 2012 « Lecture 37

© 2012 Kavita Bala *

(with previous instructors James/Marschner)

29

Choice of bounding volumes

* Spheres -- easy to intersect, not always so tight

* Axis-aligned bounding boxes (AABBs) -- easy to intersect,
often tighter (esp. for axis-alighed models)

* Oriented bounding boxes (OBBs) -- easy to intersect (but
cost of transformation), tighter for arbitrary objects

* Computing the bvols

— For primitives -- generally pretty easy

—For groups -- not so easy for OBBs (to do well)

— For transformed surfaces -- not so easy for spheres

(a)

Cornell CS4620/5620 Fal

(b)

(c)

© 2012 Kavita Bala *

p tructors James/Marschner)

30

Axis aligned bounding boxes

* Probably easiest to implement
* Computing for primitives

— Cube: duh!

—Sphere, cylinder, etc.: pretty obvious

—Groups or meshes: min/max of component parts
* How to intersect them

—Treat them as an intersection of slabs (see Shirley)

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala * 31

(with previous instructors James/Marschner)

Building a hierarchy

* Can do it top down or bottom up

* Top down
—Make bbox for whole scene, then split into parts
* Recurse on parts
« Stop when there are just a few objects in your box
— Or if you are too deep (say max depth = 24)

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala « 32

(with previous instructors James/Marschner)

Building a hierarchy

* How to partition?
— Practical: partition along axis

* Center partition
—Simple
—Unbalanced tree

* Median partition
—More expensive
—More balanced tree

* Obijects that cross the median partition

—Pick one of the sides to put the object on
—Expand the bbox to cover that object

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala « 33

(with previous instructors James/Marschner)

Construction Possibility |

@

O

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala « 34

(with previous instructors James/Marschner)

Construction Possibility 2

] // P

O

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 35

(with previous instructors James/Marschner)

Hierarchical Data Structures

* From O(N) to O(log N)
— Cluster objects hierarchically
—Single intersection might eliminate cluster

* Bounding volume hierarchy

* Space subdivision
—Octree
—Kd-tree
—Uniform

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 36

(with previous instructors James/Marschner)

Regular space subdivision

* An entirely different approach: uniform grid of cells

\

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 37

(with previous instructors James/Marschner)

Non-regular space subdivision

* k-d Tree
—subdivides space, like grid
—adaptive, like BVH

~v
A

gV |

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 20‘|2 Kavita Bala * 38

(with previous instructors James/Marschner)

Implementing acceleration structures

» Conceptually simple to build acceleration structure into
scene structure

* Better engineering decision to separate them

Cornell CS4620/5620 Fall 2012 « Lecture 37 © 2012 Kavita Bala * 39

(with previous instructors James/Marschner)

