

Computer Networks: Architecture and Protocols

Lecture 14 Border-Gateway Protocol

Goals for Today's Lecture

- Continue the deep dive into Border-Gateway Protocol (BGP)
 - One of the most non-intuitive protocols
 - Driven by "business goals", rather than "performance goals"
 - I will try to provide as much intuition as possible
 - But, for the above reasons, BGP is one of the harder protocols
- Understanding BGP
 - Do a lot of small examples
 - We will focus on a synchronous version:
 - One node in the network acts at a time
 - In practice, BGP implementations are asynchronous

Recap from last lecture

Recap: What does a computer network look like?

Recap: Business Relationships Shape Topology and Policy

- Three basic kinds of relationships between ASes
 - AS A can be AS B's *customer*
 - AS A can be AS B's *provider*
 - AS A can be AS B's *peer*
- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Exchange roughly equal traffic

Recap: Why Peer?

Business Implications

- Customers pay provider
- Peers don't pay each other

Recap: Inter-domain Routing Follows the Money

 \leftarrow traffic allowed \leftarrow - - traffic <u>not</u> allowed

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Border Gateway Protocol

Administrative Structure Shapes Inter-domain Routing

- ASes want freedom to pick routes based on policy
 - "My traffic can't be carried over my competitor's network!"
 - "I don't want to carry A's traffic through my network!"
 - Cannot be expressed as Internet-wide "least cost"
- ASes want autonomy
 - Want to choose their own internal routing protocol
 - Want to choose their own policy
- ASes want privacy
 - Choice of network topology, routing policies, etc.

Inter-domain Routing: Setup

- Destinations are IP prefixes (12.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - Implemented by AS border routers

An AS advertises its best routes to one or more IP prefixes Each AS selects the "best" route it hears advertised for a prefix

Sound familiar?

BGP Inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology
- Iterative and distributed convergence on paths
- But, four key differences

(1) BGP does not pick the shortest path routes!

• BGP selects route based on policy, not shortest distance/least cost

• How do we avoid loops?

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send *distance metric* per dest. d
 - Path vector: send the *entire path* for each dest. d

Loop Detection with Path-Vector

- Node can easily detect a loop
 - Look for its own node identifier in the path
- Node can simply discard paths with loops
 - e.g. node 1 sees itself in the path 3, 2, 1

(2) Path-vector Routing

- Idea: advertise the entire path
 - Distance vector: send *distance metric* per dest. d
 - Path vector: send the *entire path* for each dest. d

- Benefits
 - Loop avoidance is easy
 - Flexible policies based on entire path

(3) Selective Route Advertisement

• For policy reasons, an AS may choose not to advertise a route to a destination

• As a result, reachability is not guaranteed even if the graph is connected

Example: AS#2 does not want to carry traffic between AS#1 and AS#3

(4) BGP may aggregate routes

• For scalability, BGP may aggregate routes for different prefixes

BGP is Inspired by Distance Vector

- Per-destination route advertisements
- No global sharing of network topology
- Iterative and distributed convergence on paths
- But, four key differences
 - BGP does not pick shortest paths
 - Each node announces one or multiple PATHs per destination
 - Selective Route advertisement: not all paths are announced
 - BGP may aggregate paths
 - may announce one path for multiple destinations

BGP Outline

- BGP Policy
 - Typical policies and implementation
- BGP protocol details
- Issues with BGP

Policy:

Imposed in how routes are selected and exported

- Selection: Which path to use
 - Controls whether / how traffic leaves the network
- **Export**: Which path to advertise
 - Controls whether / how traffic enters the network

Typical Selection Policy

- In decreasing order of priority:
 - 1. Make or save money (send to customer > peer > provider)
 - 2. Maximize performance (smallest AS path length)
 - 3. Minimize use of my network bandwidth ("hot potato")
 - 4. ...

Typical Export Policy

Destination prefix advertised by	Export route to	
Customer	Everyone (providers, peers, other customers)	
Peer	Customers	
Provider	Customers	

Known as the "Gao-Rexford" rules Capture common (but not required!) practice

Gao-Rexford

With Gao-Rexford, the AS policy graph is a DAG (directed acyclic graph) and routes are "valley free"

BGP Outline

- BGP Policy
 - Typical policies and implementation
- BGP protocol details
- Issues with BGP

Who speaks BGP?

BGP Sessions

BGP Sessions

eBGP, iBGP, IGP

- **eBGP**: BGP sessions between border routers in <u>different</u> ASes
 - Learn routes to external destinations
- iBGP: BGP sessions between border routers and other routers within the same AS
 - Distribute externally learned routes internally
- IGP: Interior Gateway Protocol = Intradomain routing protocol
 - Provides internal reachability
 - e.g. OSPF, RIP

Putting the Pieces Together

Basic Messages in BGP

• Open

• Establishes BGP session

• Update

- Inform neighbor of new routes
- Inform neighbor of old routes that become inactive

• Keepalive

• Inform neighbor that connection is still viable

BGP Example (All good)

	1	2	3	4
R1	10	20	30	-
R2	10	20	30	430
R3	130	20	30	430

GOOD GADGET

BGP Outline

- BGP Policy
 - Typical policies and implementation
- BGP protocol details
- Issues with BGP

BGP: Issues

- Reachability
- Security
- Convergence
- Performance
- Anomalies

Reachability

- In normal routing, if graph is connected then reachability is assured
- With policy routing, this doesn't always hold

Security

- An AS can claim to serve a prefix that they actually don't have a route to (blackholing traffic)
 - Problem not specific to policy or path vector
 - Important because of AS autonomy
 - Fixable: make ASes prove they have a path
- But...
- AS may forward packets along a route different from what is advertised
 - Tell customers about a fictitious short path...
 - Much harder to fix!

Convergence

- If all AS policies follow Gao-Rexford rules,
 - Then BGP is guaranteed to converge (safety)
- For arbitrary policies, BGP may fail to converge!

Example of Policy Oscillation

Initially: nodes 1, 2, 3 know only shortest path to 0

1 advertises its path 1 0 to 2

3 advertises its path 3 0 to 1

1 withdraws its path 1 0 from 2

2 advertises its path 2 0 to 3

3 withdraws its path 3 0 from 1

1 advertises its path 1 0 to 2

2 withdraws its path 2 0 from 3

We are back to where we started!

BGP Example (Persistent Loops)

BAD GADGET

	1	2	3	4
R1	10	20	30	-
R2	10	20	30	420
R3	10	20	3420	420
R4	10	210	3420	420
R5	10	210	3420	-
R6	10	210	30	-
R7	130	210	30	-
R8	130	20	30	-
R9	130	20	30	420
R10	130	20	3420	420
R11	10	20	3420	420

BGP Example (Bad bad bad)

NAUGHTY GADGET

Convergence

- If all AS policies follow Gao-Rexford rules,
 - Then BGP is guaranteed to converge (safety)
- For arbitrary policies, BGP may fail to converge!
- Why should this trouble us?

Performance Non-Issues

- Internal Routing
 - Domains typically use "hot potato" routing
 - Not always optimal, but economically expedient
- Policy not about performance
 - So policy-chosen paths aren't shortest
- AS path length can be misleading
 - 20% of paths inflated by at least 5 router hops

Performance (example)

- AS path length can be misleading
 - An AS may have many router-level hops

Performance: Real Issue

Slow Convergence

- BGP outages are biggest source of Internet problems
- Labovitz et al. *SIGCOMM'97*
 - 10% of routes available less than 95% of the time
 - Less than 35% of routes available 99.99% of the time
- Labovitz et al. *SIGCOMM 2000*
 - 40% of path outages take 30+ minutes to repair
- But most popular paths are very stable