

Computer Networks: Architecture and Protocols

Lecture 13 Path-Vector Protocol (BGP)

Rachit Agarwal

Goals for Today's Lecture

- Dive deeper into Inter-domain routing: Border-Gateway Protocol
 - One of the most non-intuitive protocols
 - Driven by "business goals", rather than "performance goals"
 - I will try to provide as much intuition as possible
 - But, for the above reasons, BGP is one of the harder protocols
- Keep sanity: very different from everything we have seen so far

Recap from last lecture

Recap: Three requirements for addressing

- Scalable routing
 - How must state must be stored to forward packets?
 - Desired: Small #routing entries (less than one entry per host per switch)
 - How much state needs to be updated upon host arrival/departure?
 - Desired: Small #updates (less than one update per switch per host change)
- Efficient forwarding
 - How quickly can one locate items in routing table?
- Host must be able to recognize packet is for them

Recap: Using L2 (MAC) names does not enable scalable routing

- Scalable routing
 - How much state to forward packets?
 - One entry per host (at each switch)
 - How much state updated for each arrival/departure?
 - One entry per host (at each switch)
- Efficient forwarding
 - Exact match lookup on MAC addresses (exact match is easy!)
- Host must be able to recognize the packet is for them
 - MAC address does this perfectly

Recap: Today's Addressing (CIDR)

- Classless Inter-domain Routing
- Idea: Flexible division between network and host addresses
- Prefix is **network address**
- Suffix is host address
- Example:
 - 128.84.139.5/23 is a 23 bit prefix with:
 - First 23 bits for network address
 - Next 9 bits for host addresses: maximum 2^9 hosts
 - All hosts within the network have the same first 23 bits (x.y.z.*)
- Terminology: "Slash 23"

Recap: How does CIDR meet our requirements?

- To understand this, we need to understand the routing on the Internet
- And to understand that, we need to understand the Internet

Recap: What does a computer network look like?

Recap: Autonomous Systems (AS)

- An AS is a network under a single administrative control
 - Currently over 30,000
 - Example: AT&T, France Telecom, Cornell, IBM, etc.
 - A collection of routers interconnecting multiple switched Ethernets
 - And interconnections to neighboring ASes
- Sometimes called "Domains"

IP addressing

Intuition: IP addressing -> Scalable Routing?

Intuition: IP addressing -> Scalable Routing?

Intuition: IP addressing -> Scalable Routing?

ESNet must maintain routing entries for both a.*.*.* and a.c.*.*

Given this addressing,

How do we think about <u>Inter-domain</u> routing protocols?

Administrative Structure Shapes Inter-domain Routing

- ASes want freedom to pick routes based on policy
 - "My traffic can't be carried over my competitor's network!"
 - "I don't want to carry A's traffic through my network!"
 - Cannot be expressed as Internet-wide "least cost"
- ASes want autonomy
 - Want to choose their own internal routing protocol
 - Want to choose their own policy
- ASes want privacy
 - Choice of network topology, routing policies, etc.

Choice of Routing Algorithm

- Link State (LS) vs. Distance Vector (DV)
- LS offers no privacy broadcasts all network information
- LS limits autonomy need agreement on metric, algorithm
- DV is a decent starting point
 - Per-destination updates by intermediate nodes give us a hook
 - But, wasn't designed to implement policy
 - ... and is vulnerable to loops if shortest paths not taken

The "Border Gateway Protocol" (BGP) extends Distance-Vector ideas to accomodate policy

Business Relationships Shape Topology and Policy

- Three basic kinds of relationships between ASes
 - AS A can be AS B's customer
 - AS A can be AS B's *provider*
 - AS A can be AS B's *peer*
- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Exchange roughly equal traffic

Business Relationships

- Business Implications
- Customers pay provider
- Peers don't pay each other

Why Peer?

Business Implications

- Customers pay provider
- Peers don't pay each other

Routing Follows the Money

 $\longleftarrow \quad traffic allowed \quad \leftarrow - - \rightarrow \quad traffic <u>not</u> allowed$

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing Follows the Money

 An AS only carries traffic to/from its own customers over a peering link