CS4450

Computer Networks:
Architecture and Protocols

Lecture 11
Intra-domain Routing: Deep Dive

Rachit Agarwal

Goals for Today’s Lecture

« Continue learning about Routing Protocols
e Link State (Global view, Local computation)—done
« Distance Vector (Local view, Local computation)—today

e Maintain sanity: its one of the “harder” lectures
 I’ll try to make it -less- hard, but ...
e Pay attention
e Review again tomorrow
e Work out a few examples

Recap from last few lectures

Recap: Spanning Tree Protocol ...

e Used in switched Ethernet to avoid broadcast storm
« Can be used for routing on the Internet (via “flooding” on spanning tree)

e Three fundamental issues:
« Unnecessary processing at end hosts (that are not the destination)
« Higher latency

e Lower available bandwidth

Recap: Routing Tables

e Routing table:
e Each switch: the next hop for each destination in the network

e Routing state: collection of routing tables across all nodes

e TWO questions:
« How can we verify given routing state is valid?
« How can we produce valid routing state?

e Global routing state valid if and only if:

e There are no dead ends (other than destination)

e There are no “persistent” loops

Recap: The right way to think about Routing Tables

« Routing tables are nothing but
« A collection of (directed) spanning tree
e One for each destination

e Routing Protocols
« Mechanisms to producing valid routing tables
« What we will see:
e “n” spanning tree protocols running in parallel

Recap: Three flavors of protocols for producing valid routing state

e Create Tree, route on tree
e E.g., Spanning tree protocol (switched Ethernet)
« Good: easy, no (persistent) loops, no dead ends
e Not-so-good: unnecessary processing, high latency, low bandwidth

« Obtain a global view:
e E.g., Link state (last lecture)

« Distributed route computation:
e E.g., Distance vector
e E.g., Border Gateway Protocol

Recap: Where to create global view?

e One option: Central server
e Collects a global view
« Computes the routing table for each node
e “Installs” routing tables at each node
« Software-defined Networks: later in course

« Second option: At each router
e Each router collects a global view
« Computes its own routing table using Link-state protocol

 Link-state routing protocol

e OSPF is a specific implementation of link-state protocol
e |[ETF RFC 2328 (IPv4) or 5340 (IPv6)

Recap: Are Loops Still Possible?

A and D think this is the path to C E thinks that this the path to C

E-C link fails, but D doesn’t know yet E reaches C via D, D reaches C via E
Loop!

Recap: Transient Disruptions

N | -
ao mu%/

« Inconsistent link-state views
« Some routers know about failure before others
e The shortest paths are no longer consistent
e Can cause transient forwarding loops
e Transient loops are still a problem!

Questions?

Local view, distributed route computation

#3: Distributed Route Computation

« Often getting a global view of the network is infeasible
 Distributed algorithms to compute feasible route

« Approach A: Finding optimal route for maximizing/minimizing a metric

« Approach B: Finding feasible route via exchanging paths among switches

Distributed Computation of Routes

« Each node computes the outgoing links (for each destination) based on:
e Local link costs
e Information advertised by neighbors

« Algorithms differ in what these exchanges contain
« Distance-vector: just the distance (and next hop) to each destination
« Path vector: the entire path to each destination

o We will focus on distance-vector for now

Recall: Routing Tables = Collection of Spanning Trees

« Can we use the spanning tree protocol (with modifications)?
« Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

o Initially each switch X announces (X,0,X) to its neighbors

16

Towards Distance Vector Protocol (with no failures)

e Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y
o Initially each switch X announces (X,0,X) to its neighbors

e Each switch X updates its view upon receiving each message
o Upon receiving message (Y,d,Z) from Z,<cheek-¥s-id
o ¥ 'sid<currentrootsetrootdestination=Y

e Switch X computes its shortest distance from the reet destination
o If current_distance to Y >d + cost of link to Z:
e update current_distance to Y =d + cost of link to Z

o If rootchanged-OR shortest distance to the reet destination changed,
send all neighbors updated message (Y, current_distance to Y, X)

23

Distance vector: a collection of “n” STP in parallel
Lets run the Protocol on this example

(destination = 1)

Round 1

Round 2

Receilve

Round 3

Receilve

Round 4

Receilve

Round 5

Receilve

Lets run the Protocol on this example

Round 1

Round 2

AN

-

Round 2

Round 2

Round 3

Zi j1
/

T

Round 3

T L [e

Round 3

T L [e

Round 4

Zi j1
/

T

Round 4

T L [e

Round 4

Recelve

Distance-vector protocol with next-hops (no failures)

e Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y
o Initially each switch X announces (X,0,X) to its neighbors

e Each switch X updates its view upon receiving each message
o Upon receiving message (Y,d,Z) from Z,<cheek-¥s-id
o ¥ 'sid<currentrootsetrootdestination=Y

e Switch X computes its shortest distance from the reet destination
o If current_distance to Y >d + cost of link to Z:
e update current_distance to Y =d + cost of link to Z
e update next_hop to destination=2

o If rootchanged-OR shortest distance to the reet destination changed,
send all neighbors updated message (Y, current_distance _to Y, X)

29

Why not Spanning Tree Protocol? Why Distance “Vector”?

« The same algorithm applies to all destinations

e Each node announces distance to each dest
e | am distance d_A away from node A
e | am distance d B away from node B

e | am distance d C away from node C

« Nodes are exchanging a vector of distances

Lets run the Protocol on this example

(with next-hops)

Round 1

Round 2

Zi j1
/

Next-hops

.

Round 2

Zi j1
/

Next-hops

.

Round 2

Zi j1
/

Next-hops

.

Round 3

e

Round 3

Next-hops

e [

Round 3

MEENYE Send Next-hops

Round 4

e

Round 4

Next-hops

e [

Round 4

MEENYE Send Next-hops

Distance Vector Protocol

e Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y

e Initially each switch X initializes its routing table to (X,0,-) and distance
infinity to all other destinations

« Switches announce their entire distance vectors (routing table w/0 next hops)

« Upon receiving a routing table from a node (say Z), each node X does:
o For each destination Y in the announcement (distance(Y, Z) = d):
o If current distance to Y >d + cost of link to Z:
« update current_distance_to_ Y =d + cost of link to Z
« update next_hop to destination =7

o If shortest distance to any destination changed, send all neighbors your
distance vectors

36

Two Aspects to This Approach

« Protocol:
e Exchanging that routing information with neighbors
« What and when for exchanges
e RIP is a protocol that implements DV (IETF RFC 2080)

o Algorithm:
« How to use the information from your neighbors to update your
own routing tables?

Lets run the Protocol again on this example

(this time with distance vectors)

Round 1

Round 1

Round 1

Round 1

Round 2

Round 3

Round 4

From Algorithm to Protocol

e Algorithm:
« Nodes use Bellman-Ford to compute distances

e Protocol
« Nodes exchange distance vectors
« Update their own routing tables

e And exchange again...
e Details: when to exchange, what to exchange, etc....

Other Aspects of Protocol

« When do you send messages?
« When any of the distance changes
« What about when the cost of a link changes?
« Periodically, to ensure consistency between neighbors

« What information do you send?
e Could send entire vector
e Or just updated entries

e Do you send everyone the same information
e Consider the following slides

Three node network

Three node network

Three node network

Three node network

Round 1

Round 2

Round 3

Round 4

Round 4

COUNT-TO-INFINITY
problem!!!!

Count-to-infinity problem

Count-to-infinity problem

Not just due to failures:

How Can You Fix This?

« Do not advertise a path back to the node that is the next hop on the path
« Called “split horizon”
e Telling them about your entry going through them
e Doesn’t tell them anything new
e Perhaps misleads them that you have an independent path

« Another solution: if you are using a next-hop’s path, then:
 Tell them not to use your path (by telling them cost of infinity)
e Called “poisoned reverse”

Convergence

 Distance vector protocols can converge slowly
e While these corner cases are rare
e The resulting convergence delays can be significant

Comparison of Scalability

 Link-State:
e Global flood: each router’s link-state (#ports)
e Send it once per link event, or periodically

e Distance Vector:
« Send longer vector (#dest) just to neighbors
« But might end up triggering their updates
e Send it every time DV changes (which can be often)

» Tradeoff:
e LS: Send it everywhere and be done in predictable time
« DV: Send locally, and perhaps iterate until convergence

End of Distance-vector Routing

