
Computer Networks:

Architecture and Protocols

CS4450

Lecture 11

Intra-domain Rou2ng: Deep Dive

Rachit Agarwal

Goals for Today’s Lecture

• Continue learning about Routing Protocols

• Link State (Global view, Local computation)—done

• Distance Vector (Local view, Local computation)—today

• Maintain sanity: its one of the “harder” lectures

• I’ll try to make it -less- hard, but …

• Pay attention

• Review again tomorrow

• Work out a few examples

3

Recap from last few lectures

• Used in switched Ethernet to avoid broadcast storm

• Can be used for routing on the Internet (via “flooding” on spanning tree)

• Three fundamental issues:

• Unnecessary processing at end hosts (that are not the destination)

• Higher latency

• Lower available bandwidth

Recap: Spanning Tree Protocol …

• Routing table:

• Each switch: the next hop for each destination in the network

• Routing state: collection of routing tables across all nodes

• Two questions:

• How can we verify given routing state is valid?

• How can we produce valid routing state?

• Global routing state valid if and only if:

• There are no dead ends (other than destination)

• There are no “persistent” loops

Recap: Routing Tables

• Routing tables are nothing but ….

• A collection of (directed) spanning tree

• One for each destination

• Routing Protocols

• Mechanisms to producing valid routing tables

• What we will see:

• “n” spanning tree protocols running in parallel

Recap: The right way to think about Routing Tables

• Create Tree, route on tree

• E.g., Spanning tree protocol (switched Ethernet)

• Good: easy, no (persistent) loops, no dead ends

• Not-so-good: unnecessary processing, high latency, low bandwidth

• Obtain a global view:

• E.g., Link state (last lecture)

• Distributed route computation:

• E.g., Distance vector

• E.g., Border Gateway Protocol

Recap: Three flavors of protocols for producing valid routing state

Recap: Where to create global view?

• One option: Central server

• Collects a global view

• Computes the routing table for each node

• “Installs” routing tables at each node

• Software-defined Networks: later in course

• Second option: At each router

• Each router collects a global view

• Computes its own routing table using Link-state protocol

• Link-state routing protocol

• OSPF is a specific implementation of link-state protocol

• IETF RFC 2328 (IPv4) or 5340 (IPv6)

Recap: Are Loops Still Possible?

5
5

5 3
5

51

1

A

D E

F

CB

5
5

5 3
5

5

1

A

D E

F

CB

A and D think this is the path to C

E-C link fails, but D doesn’t know yet

E thinks that this the path to C

E reaches C via D, D reaches C via E
Loop!

Recap: Transient Disruptions

5
5

5 3
5

5

1

A

D E

F

CB

5
5

5 3
5

5

1

A

D E

F

CB

• Inconsistent link-state views

• Some routers know about failure before others

• The shortest paths are no longer consistent

• Can cause transient forwarding loops

• Transient loops are still a problem!

Questions?

Local view, distributed route computation

• Often getting a global view of the network is infeasible

• Distributed algorithms to compute feasible route

• Approach A: Finding optimal route for maximizing/minimizing a metric

• Approach B: Finding feasible route via exchanging paths among switches

#3: Distributed Route Computation

• Each node computes the outgoing links (for each destination) based on:

• Local link costs

• Information advertised by neighbors

• Algorithms differ in what these exchanges contain

• Distance-vector: just the distance (and next hop) to each destination

• Path vector: the entire path to each destination

• We will focus on distance-vector for now

Distributed Computation of Routes

Recall: Routing Tables = Collection of Spanning Trees

16

• Can we use the spanning tree protocol (with modifications)?

• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

• Initially each switch X announces (X,0,X) to its neighbors

Towards Distance Vector Protocol (with no failures)

23

• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

• Initially each switch X announces (X,0,X) to its neighbors

• Each switch X updates its view upon receiving each message

• Upon receiving message (Y,d,Z) from Z, check Y’s id

• If Y’s id < current root: set root destination = Y

• Switch X computes its shortest distance from the root destination

• If current_distance_to_Y > d + cost of link to Z:

• update current_distance_to_Y = d + cost of link to Z

• If root changed OR shortest distance to the root destination changed,

send all neighbors updated message (Y, current_distance_to_Y, X)

Distance vector: a collection of “n” STP in parallel

Lets run the Protocol on this example

(destination = 1)

Round 1

Receive Send

1 (1, 0, 1)

2

3

4

5

6

7

Round 2

Receive Send

1 (1, 0, 1)

2

3 (1, 0, 1) (1, 1, 3)

4

5 (1, 0, 1) (1, 1, 5)

6 (1, 0, 1) (1, 1, 6)

7

Round 3

Receive Send

1 (1, 0, 1)
(1, 1, 3), (1, 1, 5),

(1, 1, 6)

2 (1, 1, 3), (1, 1, 6) (1, 2, 2)

3 (1, 1, 3)

4

5 (1, 1, 5) (1, 1, 6)

6 (1, 1, 6) (1, 1, 5)

7

Round 4

Receive Send

1 (1, 0, 1)

2 (1, 2, 2)

3 (1, 1, 3) (1, 2, 2)

4 (1, 2, 2) (1, 3, 4)

5 (1, 1, 5)

6 (1, 1, 6) (1, 2, 2)

7 (1, 2, 2) (1, 3, 7)

Round 5

Receive Send

1 (1, 0, 1)

2 (1, 2, 2) (1, 3, 4), (1, 3, 7)

3 (1, 1, 3)

4 (1, 3, 4) (1, 3, 7)

5 (1, 1, 5)

6 (1, 1, 6)

7 (1, 3, 7) (1, 3, 4)

Lets run the Protocol on this example

2

1

3

2 1

7

Round 1

Receive Send

1 (1, 0, 1)

2 (2, 0, 2)

3 (3, 0, 3)

2

1

3

2 1

7

Round 2

Receive Send

1

(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)2

1

3

2 1

7

Round 2

Receive Send

1

(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)

2

(2, 0, 2)

(1, 0, 1),

(3, 0, 3)

(1, 2, 2),

(3, 7, 2)

2

1

3

2 1

7

Round 2

Receive Send

1

(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)

2

(2, 0, 2)

(1, 0, 1),

(3, 0, 3)

(1, 2, 2),

(3, 7, 2)

3

(3, 0, 3)

(1, 0, 1),

(2, 0, 2)

(1, 1, 3),

(2, 7, 3)

2

1

3

2 1

7

Round 3

Receive Send

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)
2

1

3

2 1

7

Round 3

Receive Send

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)

2

(1, 2, 2),

(2, 0, 2),

(3, 7, 2)

(2, 2, 1),

(3, 1, 1),

(1, 1, 3),

(2, 7, 3)

(3, 3, 2)

2

1

3

2 1

7

Round 3

Receive Send

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)

2

(1, 2, 2),

(2, 0, 2),

(3, 7, 2)

(2, 2, 1),

(3, 1, 1),

(1, 1, 3),

(2, 7, 3)

(3, 3, 2)

3

(1, 1, 3),

(2, 7, 3),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1),

(1, 2, 2),

(3, 7, 2)

(2, 3, 3)

2

1

3

2 1

7

Round 4

Receive Send

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

2

1

3

2 1

7

Round 4

Receive Send

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

2

(1, 2, 2),

(2, 0, 2),

(3, 3, 2)

(2, 3, 3)

2

1

3

2 1

7

Round 4

Receive Send

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

2

(1, 2, 2),

(2, 0, 2),

(3, 3, 2)

(2, 3, 3)

3

(1, 1, 3),

(2, 3, 3),

(3, 0, 3)

(3, 3, 2)

2

1

3

2 1

7

Distance-vector protocol with next-hops (no failures)

29

• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

• Initially each switch X announces (X,0,X) to its neighbors

• Each switch X updates its view upon receiving each message

• Upon receiving message (Y,d,Z) from Z, check Y’s id

• If Y’s id < current root: set root destination = Y

• Switch X computes its shortest distance from the root destination

• If current_distance_to_Y > d + cost of link to Z:

• update current_distance_to_Y = d + cost of link to Z

• update next_hop_to_destination = Z

• If root changed OR shortest distance to the root destination changed,

send all neighbors updated message (Y, current_distance_to_Y, X)

• The same algorithm applies to all destinations

• Each node announces distance to each dest

• I am distance d_A away from node A

• I am distance d_B away from node B

• I am distance d_C away from node C

• …

• Nodes are exchanging a vector of distances

Why not Spanning Tree Protocol? Why Distance “Vector”?

Lets run the Protocol on this example

(with next-hops)

2

1

3

2 1

7

Round 1

Receive Send Next-hops

1 (1, 0, 1) [-]

2 (2, 0, 2) [-]

3 (3, 0, 3) [-]

2

1

3

2 1

7

Round 2

Receive Send Next-hops

1

(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)

[-,

2,

3]
2

1

3

2 1

7

Round 2

Receive Send Next-hops

1

(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)

[-,

2,

3]

2

(2, 0, 2)

(1, 0, 1),

(3, 0, 3)

(1, 2, 2),

(3, 7, 2)

[1,

-,

3]

2

1

3

2 1

7

Round 2

Receive Send Next-hops

1

(1, 0, 1)

(2, 0, 2),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1)

[-,

2,

3]

2

(2, 0, 2)

(1, 0, 1),

(3, 0, 3)

(1, 2, 2),

(3, 7, 2)

[1,

-,

3]

3

(3, 0, 3)

(1, 0, 1),

(2, 0, 2)

(1, 1, 3),

(2, 7, 3)

[1,

2,

-]

2

1

3

2 1

7

Round 3

Receive Send Next-hops

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)

[-,

2,

3]

2

1

3

2 1

7

Round 3

Receive Send Next-hops

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)

[-,

2,

3]

2

(1, 2, 2),

(2, 0, 2),

(3, 7, 2)

(2, 2, 1),

(3, 1, 1),

(1, 1, 3),

(2, 7, 3)

(3, 3, 2)

[1,

-,

1]

2

1

3

2 1

7

Round 3

Receive Send Next-hops

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(1, 2, 2),

(3, 7, 2),

(1, 1, 3),

(2, 7, 3)

[-,

2,

3]

2

(1, 2, 2),

(2, 0, 2),

(3, 7, 2)

(2, 2, 1),

(3, 1, 1),

(1, 1, 3),

(2, 7, 3)

(3, 3, 2)

[1,

-,

1]

3

(1, 1, 3),

(2, 7, 3),

(3, 0, 3)

(2, 2, 1),

(3, 1, 1),

(1, 2, 2),

(3, 7, 2)

(2, 3, 3)

[1,

1,

-]

2

1

3

2 1

7

Round 4

Receive Send Next-hops

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

[-,

2,

3]

2

1

3

2 1

7

Round 4

Receive Send Next-hops

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

[-,

2,

3]

2

(1, 2, 2),

(2, 0, 2),

(3, 3, 2)

(2, 3, 3)

[1,

-,

1]

2

1

3

2 1

7

Round 4

Receive Send Next-hops

1

(1, 0, 1)

(2, 2, 1),

(3, 1, 1)

(3, 3, 2),

(2, 3, 3)

[-,

2,

3]

2

(1, 2, 2),

(2, 0, 2),

(3, 3, 2)

(2, 3, 3)

[1,

-,

1]

3

(1, 1, 3),

(2, 3, 3),

(3, 0, 3)

(3, 3, 2)

[1,

1,

-]

2

1

3

2 1

7

Distance Vector Protocol

36

• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y

• Initially each switch X initializes its routing table to (X,0,-) and distance

infinity to all other destinations

• Switches announce their entire distance vectors (routing table w/0 next hops)

• Upon receiving a routing table from a node (say Z), each node X does:

• For each destination Y in the announcement (distance(Y, Z) = d):

• If current_distance_to_Y > d + cost of link to Z:

• update current_distance_to_Y = d + cost of link to Z

• update next_hop_to_destination = Z

• If shortest distance to any destination changed, send all neighbors your

distance vectors

• Protocol:

• Exchanging that routing information with neighbors

• What and when for exchanges

• RIP is a protocol that implements DV (IETF RFC 2080)

• Algorithm:

• How to use the information from your neighbors to update your

own routing tables?

Two Aspects to This Approach

Lets run the Protocol again on this example

(this time with distance vectors)

2

1

3

2 1

7

Round 1

2

1

3

2 1

7

Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 infinity

Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 infinity

distance next-hop
1 infinity
2 0 -
3 infinity

Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 infinity

distance next-hop
1 infinity
2 0 -
3 infinity

distance next-hop
1 infinity
2 infinity
3 0 -

Round 2

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 7 3

distance next-hop
1 1 1
2 7 2
3 0 -

Round 3

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -

Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -

• Algorithm:

• Nodes use Bellman-Ford to compute distances

• Protocol

• Nodes exchange distance vectors

• Update their own routing tables

• And exchange again…

• Details: when to exchange, what to exchange, etc….

From Algorithm to Protocol

• When do you send messages?

• When any of the distance changes

• What about when the cost of a link changes?

• Periodically, to ensure consistency between neighbors

• What information do you send?

• Could send entire vector

• Or just updated entries

• Do you send everyone the same information

• Consider the following slides

Other Aspects of Protocol

Three node network

2

1

3

2 1

7

Three node network

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

Three node network

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -

Three node network

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -

Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -

Round 2

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -

Round 3

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -

Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

COUNT-TO-INFINITY

problem!!!!

Count-to-infinity problem

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

Count-to-infinity problem

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

Not just due to failures:

Can happen with changes in cost!

• Do not advertise a path back to the node that is the next hop on the path

• Called “split horizon”

• Telling them about your entry going through them

• Doesn’t tell them anything new

• Perhaps misleads them that you have an independent path

• Another solution: if you are using a next-hop’s path, then:

• Tell them not to use your path (by telling them cost of infinity)

• Called “poisoned reverse”

How Can You Fix This?

• Distance vector protocols can converge slowly

• While these corner cases are rare

• The resulting convergence delays can be significant

Convergence

• Link-State:

• Global flood: each router’s link-state (#ports)

• Send it once per link event, or periodically

• Distance Vector:

• Send longer vector (#dest) just to neighbors

• But might end up triggering their updates

• Send it every time DV changes (which can be often)

• Tradeoff:

• LS: Send it everywhere and be done in predictable time

• DV: Send locally, and perhaps iterate until convergence

Comparison of Scalability

End of Distance-vector Routing

