CS4450

Computer Networks:
Architecture and Protocols

Lecture 10
Fundamentals of Routing
Routing Protocols

Prof. Rachit Agarwal

Announcements

e Please submit regrade requests for Exam 1 before 11:59PM on Wednesday

e Problem Set 3 was released last week

« As much as | would like to, | will not be able to predict your grade
« We grade on a curve
e Depends on performance across students, and across exams

Goals for Today’s Lecture

e Learning about Routing Protocols
« Link State (Global view, Local computation)
 Distance Vector (Local view, Local computation)

Recap from last lecture

Recap: Routing using Spanning Trees

« Easy to design routing algorithms for (spanning) trees

e Step 1: Source node “floods” its packet on its spanning tree links

e Step 2: Whenever a node receives a packet:

e Forwards incoming packet out to all links other than the one
that sent the packet

« Amazing properties:
« No routing tables needed!
e No packets will ever loop.
« At least (and exactly) one packet must reach the destination
e Assuming no failures

Recap: Why do we need the network layer?

« Spanning Tree Protocol used in switched Ethernet to avoid broadcast storm
« Can be used for routing on the Internet (via “flooding” on spanning tree)

e Three fundamental issues:
o Unnecessary processing at end hosts (that are not the destination)
e Higher latency
e Lower available bandwidth

Recap: The right way to think about Routing Tables

« Routing tables are nothing but
« A collection of (directed) spanning tree
e One for each destination

« Routing Protocols
« Mechanisms to producing routing tables
« What we will see:
e “n” spanning tree protocols running in parallel

Questions?

Routing Tables and Routing State

e Routing table:
e Each switch: the next hop for each destination in the network

e Routing state: collection of routing tables across all nodes

“Valid Routing Tables” (routing state)

e Global routing state is valid if:
o it always results in deliver packets to their destinations

« Goal of Routing Protocols
« Compute a valid state
« But how to tell if a routing state is valid?...
e Think about it, what could make routing incorrect?

Validity of a Routing State

e Global routing state valid if and only if:

e There are no dead ends (other than destination)

e There are no loops

« A dead end is when there is no outgoing link
e A packet arrives, but ..
« the routing table does not have an outgoing link
« And that node is not the destination

« Aloop is when a packet cycles around the same set of nodes forever
« There are no “persistent” loops
e “Transient” loops?

Example: Routing with Dead Ends

e Suppose packet wants to go from Cornell to MIT using given state:

DESTINATION NEXT HOP

CORNELL L1 -
MIT L2 Switch #1 L4

HARVARD L4

Cornell

—

- T

Harvard

Switch #3
L5

CORNELL

G = MIT L6

HARVARD L3

< v
- T

DESTINATION NEXT HOP -
Dead End!

Packet never reaches MIT

No forwarding decision for MIT!

MIT

Example: Routing with Loops

e Suppose packet wants to go from Cornell to MIT using given state:

DESTINATION NEXT HOP

CORNELL L1
MIT L3

HARVARD L4

Cornell

Harvard

DESTINATION NEXT HOP

CORNELL L5
MIT L5
HARVARD L3

NEXT HOF -
CORNELL L2

MIT 12

HARVARD L5

Loop!
Packet never reaches MIT MIT

Two Questions

« How can we verify given routing state is valid?

« How can we produce valid routing state?

Checking Validity of a Routing State

« Check validity of routing state for one destination at a time...

e For each node:
o Mark the outgoing link with arrow for the required destination
e There can only be one at each node

e Eliminate all links with no arrows

e Look what’s left. State is valid if and only if
« Remaining graph is a spanning tree with destination as sink
e« Why is this true?
e Tree -> No loops
e Spanning (tree) -> No dead ends

Example 1

Example 1: Pick Destination

Example 1: Put Arrows on Outgoing Ports

)

Example 1: Remove unused Links

.

~

~.

Leaves Spanning Tree: Valid

Example 2:

~

Is this valid?

Example 3:

.

=

Is this valid?

Checking Validity of a Routing State

e Simple to check validity of routing state for a particular destination
e Dead ends: nodes without arrows

e Loops: obvious, disconnected from destination and rest of the graph

Two Questions

« How can we produce valid routing state?

Creating Valid Routing State

« Easy to avoid dead ends
« Avoiding loops is hard

« The key difference between routing protocols is how they avoid loops!

Three flavors of protocols

e Create Tree, route on tree
e E.g., Spanning tree protocol (as in switched Ethernet)
« Good: easy, no (persistent) loops, no dead ends
e Not-so-good: unnecessary processing, high latency, low bandwidth

« Obtain a global view:
e E.g., Link state

« Distributed route computation:
e E.g., Distance vector
e E.g., Border Gateway Protocol

Routing Metrics

« Routing goals: compute paths with minimum X
« X =number of “hops” (nodes in the middle)
« X =latency
e X =weight
« X = failure probability

e Generally assume every link has “cost” associated with it

« We want to minimize the cost of the entire path
« We will focus on a subset of properties X, where:

 Cost of a path = sum of costs of individual links/nodes on the path
e E.g., number of hops and latency

#1: Create a Tree

#1: Create a Tree Out of Topology

« Remove enough links to create a tree containing all nodes
e Sounds familiar? Spanning trees!

o If the topology has no loops, then just make sure not sending packets
back from where they came
e That causes an immediate loop

e Therefore, if no loops in topology and no formation of immediate loops
ensures valid routing

« However... three challenges
e Unnecessary host resources used to process packets
e High latency
o Low bandwidth (utilization)

Global view

Two Aspects of Global View Method

e Protocol: What we focus on today
« Where to create global view
« How to create global view
e Disseminating route computation (if necessary)
« When to run route computation

« Algorithm: computing loop-free paths on graph
o Straightforward to compute lowest cost paths
« Using Dijkstra’s algorithm (please study; algorithms course)
« We won’t spend time on this

Where to create global view?

e One option: Central server
e Collects a global view
« Computes the routing table for each node
e “Installs” routing tables at each node
« Software-defined Networks: later in course

« Second option: At each router
e Each router collects a global view
« Computes its own routing table using Link-state protocol

« What does fate sharing principle tells us?
e Routing state should be at the routers

 Link-state routing protocol
e OSPF is a specific implementation of link-state protocol
o |[ETF RFC 2328 (IPv4) or 5340 (IPv6)

Overview of Link-State Routing

« Every router knows its local “link state”
« Knows state of links to neighbors
« Up/down, and associated cost

« A router floods its link state to all other routers
e Uses a special packet — Link State Announcements (LSA)
« Announcement is delivered to all nodes (next slide)
« Hence, every router learns the entire network graph

e Runs route computation locally
« Computing least cost paths from them to all other nodes
e E.g., using Dijkstra’s algorithm

How does Flooding Work?

e “Link state announcement” (LSA) arrives on a link at a router

e That router:
« Remembers the packet
e Forwards the packet out all other links

e Does not send it out the incoming link
e« Why?

o If a previously received announcement arrives again...
e Router drops it (no need to forward again)

Link-State Routing

Host A

Host E

Host B

Host C

Host D

d

Each Node Then has a Global View

Host B
Nelso
HostA - D,l<e ,J\m I Host C
S j NS
121 S2 12”1
. Ner TN . Ner TN
ST / \ S3
\ S4 /
> Y
S5 / I JS@>I
E\e<e>a/m q7 7 NN
el
\ S%/ T Host D
Host E /
7 NN 7
Node
==
AN

When to Initiate Flooding of announcements?

« Topology change
e Link failures
e Link recovery

« Configuration change
e Link cost change (why would one change link cost?)

e Periodically
e Refresh the link-state information
o Typically (say) 30 minutes
e Corrects for possible corruption of data

Making Floods Reliable

« Reliable Flooding

e Ensure all nodes receive same link state announcements
« No announcements dropped
e Ensure all nodes use the latest version

e Suppose we can implement reliable flooding. How can it still fail?

« Can you ever have loops with link-state routing?

« Again: Can you ever have loops with link-state routing?

Are Loops Still Possible?

A and D think this is the path to C E thinks that this the path to C

E-C link fails, but D doesn’t know yet E reaches C via D, D reaches C via E
Loop!

Transient Disruptions

N | -
ao mu%/

« Inconsistent link-state views
« Some routers know about failure before others
e The shortest paths are no longer consistent
e Can cause transient forwarding loops
e Transient loops are still a problem!

Convergence

« Eventually, all routers have consistent routing information
e E.g., all nodes having the same link-state database
e Here, eventually means “if nothing changes after a while”

« Forwarding is consistent after convergence
« All nodes have the same link-state database
« All nodes forward packets on same paths

« But while still converging, bad things can happen

Time to Reach Convergence

e Sources of convergence delay?
e Time to detect failure
« Time to flood link-state information (~longest RTT)
« Time to recompute forwarding tables

e Performance problems during convergence period?
e Dead ends
e Looping packets
« And some more we’ll see later

Link State is Conceptually Simple

e Everyone floods links information
e Everyone then knows graph of the network

e Everyone independently computes paths on the graph

« All the complexity is in the details

