
Computer Networks:
Architecture and Protocols

CS4450

Lecture 7
“Why” Frames

“Why” Switched Ethernet
Spanning Tree Protocol

Prof. Rachit Agarwal

Goals for Today’s Lecture

• Dive deep into Link layer design

• Finish one of the core link layer protocols: CSMA/CD
• Why Frames? — Implementing Link Layer on top of Physical Layer

• “Why” has Ethernet evolved to switched Ethernet?

• Experience (the beauty of) Spanning Tree Protocol

2

• Traditional Link Layer: Broadcast Ethernet

• Network Adapters (e.g., NIC — network interface card)

• The hardware that connects a machine to the network
• Has a “name” — MAC (Medium access control) address

Recap: Data Link Layer

3

http://ascii24.com/news/i/hard/article/2002/05/08/thumbnail/thumb220x174-images683805.jpg

Recap: Techniques for sharing a broadcast channel

• Context: a shared broadcast channel

• Must avoid/handle having multiple sources speaking at once
• Otherwise collisions lead to garbled data
• Need distributed algorithm for sharing channel
• Algorithm determines when and which source can transmit

• Three classes of techniques

• Frequency-division multiple access: coordinated sharing in space
• Time-division multiple access: coordinated sharing in time
• Random access: uncoordinated sharing

• Detect collisions, and if needed, recover from collisions
• Carrier Sense Multiple Access (CSMA)

4

• Carrier Sense: continuously listen to the channel

• If idle: start transmitting
• If busy: wait until idle

• Collision Detection: listen while transmitting

• No collision: transmission complete
• Collision: abort transmission

• When to retransmit?: exponential back off

• After collision, transmit after “waiting time”

• After k collisions, choose “waiting time” from {0, …, 2k-1)
• Exponentially increasing waiting times
• But also, exponentially larger success probability

Recap: CSMA/CD in one slide!

5

• Carrier Sense: continuously listen to the channel

• Collision Detection: listen while transmitting

• When to retransmit?: exponential back off
• After collision, transmit after “waiting time”

• After k collisions, choose “waiting time” from {0, …, 2k-1)
• Exponentially increasing waiting times
• But also, exponentially larger success probability

• Some important details:

• After each collision, reset slot number to 0

• After a successful frame transmission, reset slot number to 0

Recap: CSMA/CD in one slide!

6

Questions?

Why Frames?

(Layering: Link Layer on top of Physical Layer)

Building Link Layer on top of Physical Layer

• Physical layer sends/receives bits on a link, and forwards to link layer

• View at the destination side physical layer:

01010110011111101111101111100101000111

• Challenge: how to take the above bits and convert to:

01010110011111101111101111100101000111

• Problem: how does the link layer separate data into correct “chunks”?
• Chunks belonging to different applications

• Data link layer interfaces with physical layer using frames

• Implemented by the network adaptor
• Finally: What are these frames?

9

Frames

10

Frames

11

Identifying start/end of frames: Sentinel Bits

• Delineate frame with special “sentinel” bit pattern
• e.g., 01111110 -> start, 01111111 -> end

• Problem: what if the sentinel occurs within the frame?

• Solution: bit stuffing

• Sender always inserts a 0 after five 1s in the frame content
• Receiver always removes a 0 appearing after five 1s

12

When Receiver sees five 1s…

• If next bit is 0, remove it, and begin counting again
• Because this must be a stuffed bit
• we can’t be at beginning/end of frame (those had six/seven 1s)

• If next bit is 1 (i.e., we have six 1s) then:
• If following bit is 0, this is the start of the frame

• Because the receiver has seen 01111110
• If following bit is 1, this is the end of the frame

• Because the receiver has seen 01111111

13

Example: Sentinel Bits

• Original data, including start/end of frame:

 01111110011111101111101111100101111111

• Sender rule: five 1s -> insert a 0

• After bit stuffing at the sender:

 01111110011111010111110011111000101111111

• Receiver rule: five 1s and next bit 0 -> remove 0

 01111110011111101111101111100101111111

14

Ethernet “Frames”

• Preamble:

• 7 bytes for clock synchronization
• 1 byte to indicate start of the frame

• Names: 6 + 6 bytes (MAC names/addresses)

• Protocol type: 2 bytes, indicating higher layer protocol (e.g., IP)

• Data payload: max 1500 bytes, minimum 46 bytes

• CRC: 4 bytes for error detection

15

What about source/destination Addresses?

• Frames are at Layer-2

• Thus, use Layer-2 addresses (MAC names/addresses)

• MAC name/address

• Numerical address associated with the network adapter
• Flat namespace of 6 bytes (e.g., 00-15-C5-49-04-A9 in HEX)
• Unique, hard coded in the adapter when it is built

• Hierarchical Allocation

• Blocks: assigned to vendors (e.g., Dell) by IEEE
• First 24 bits (e.g., 00-15-C5-**-**-**)

• Adapter: assigned by the vendor from its block
• Last 24 bits

16

Questions?

Putting it all together

(Traditional Ethernet)

• (Source) Link layer receives data from the network layer (more later)

• (Source) Link layer divides data into frames

• How does it know source/destination MAC names?
• Source name is easy … destination name is tricky (more later)

• (Source) Link layer passes the frame to physical layer

• Frames up the frames (using sentinel bits)
• And broadcasts on the broadcast Ethernet

• (EACH) physical layer regenerates the frame…

• And sends it up to the (destination) link layer ….
• Which sends the data to the network layer …. If and only if:

• destination name matches the receiver’s MAC name
• Or, the destination name is the broadcast address

(FF:FF:FF:FF:FF:FF)

19

Traditional Ethernet

Traditional Ethernet

• Ethernet is “plug-n’play”
• A new host plugs into the Ethernet is good to go
• No configuration by users or network operators
• Broadcast as a means of bootstrapping communication

20

Questions?

WHY Switched Ethernet?

23

• B and D can tell that collision occurred

• However, need restrictions on
• Minimum frame size

• Maximum distance

Collision Detection limits Ethernet scalability

Limits on Traditional Ethernet Scalability

• Latency depends on physical length of link

• Propagation delay

• Suppose A sends a packet at time 0

• B sees an idle line at all times before d
• … so B happily starts transmitting a packet

• B detects a collision at time d

• But A can’t see collision until 2d

• A must have a frame size such that transmission time > 2d

• Need transmission time > 2 * propagation delay

24

• Transmission time > 2 * propagation delay

• Requires either very large frames (underutilization) or small scale.

• Example: consider 100 Mbps Ethernet

• Suppose minimum frame length: 512 bits (64 bytes)
• Transmission time = 5.12 μsec
• Thus, propagation delay < 2.56 μsec
• Length < 2.56 μsec * speed of light
• Length < 768m

• Cannot scale beyond ~76.8m for 1Gbps and beyond ~7.68m for 10Gbps

25

Limits on Traditional Ethernet Scalability

• Transmission time > 2 * propagation delay

• Cannot scale beyond ~76.8m for 1Gbps and beyond ~7.68m for 10Gbps

• This is WHY modern Ethernet networks are “switched”

26

Limits on Traditional Ethernet Scalability

Evolution

• Ethernet was invented as a broadcast technology

• Hosts share channel
• Each packet received by all attached hosts
• CSMA/CD for access control

• Current Ethernets are “switched”

• Point-to-point medium between switches;
• Point-to-point medium between each host and switch
• Sharing only when needed (using CSMA/CD)

27

Questions?

Switched Ethernet

Switched Ethernet

• Enables concurrent communication
• Host A can talk to C, while B talks to D
• No collisions -> no need for CSMA, CD
• No constraints on link lengths or frame size

30

Routing in Switched Ethernet (Extended LANs)

31

Naïvely Routing in “Extended LANs”: Broadcast storm

32

How to avoid the Broadcast Storm Problem?

33

Get rid of the loops!

Lets get back to the graph representation!

34

Easiest Way to Avoid Loops

• Use a network topology (graph) where loop is impossible!

• Take arbitrary topology (graph)

• Build spanning tree

• Subgraph that includes all vertices but contains no cycles

• Links not in the spanning tree are not used in forwarding frames

• Only one path to destinations on spanning trees
• So don't have to worry about loops!

35

Consider Graph

36

Multiple Spanning Trees

37

Subgraph that includes all vertices but contains no cycles

Questions?

Spanning Tree Approach

• Take arbitrary topology

• Pick subset of links that form a spanning tree

• Only forward packets on the spanning tree
• => No loops
• => No broadcast storm

39

Spanning Tree Protocol

• Protocol by which bridges construct a spanning tree

• Nice properties
• Zero configuration (by operators or users)
• Self healing

• Still used today

• Constraints for backwards compatibility
• No changes to end-hosts
• Maintain plug-n-play aspect

• Earlier Ethernet achieved plug-n-play by leveraging a broadcast medium
• Can we do the same for a switched topology?

40

Algorithm has Two Aspects…

• Pick a root:
• Destination to which the shortest paths go
• Pick the one with the smallest identifier (MAC name/address)

• Compute the shortest paths to the root
• No shortest path can have a cycle
• Only keep the links on the shortest path
• Break ties in some way

• so we only keep one shortest path from each node

• Ethernet’s spanning tree construction does both with a single algorithm

41

Breaking Ties

• When there are multiple shortest paths to the root:
• Choose the path via neighbor switch with the smallest identifier

• One could use any tie breaking system

• This is just an easy one to remember and implement

42

Constructing a Spanning Tree

• Messages (Y,d,X)

• Proposing Y as the root
• From node X
• And advertising a distance d between X and Y

• Switches elect the node with smallest identifier (MAC address) as root
• Y in messages

• Each switch determines if a link is on its shortest path to the root
• If not, excludes it from the tree
• d to Y in the message is used to determine this

43

Steps in Spanning Tree Protocol

44

• Messages (Y,d,X)

• Proposing root Y; from node X; advertising a distance d to Y

• Initially each switch proposes itself as the root
• that is, switch X announces (X,0,X) to its neighbors

• At each switch Z:
WHENEVER a message (Y,d,X) is received from X:

• IF Y’s id < current root
• THEN set root = Y; next-hop = X

• IF Shortest distance to root > d + distance_from_X
• THEN set shortest-distance-to-root = d + distance_from_X

• IF root changed OR shortest distance to the root changed:

• Send all neighbors message (Y, shortest-distance-to-root, Z)

Group Exercise:

Lets run the Spanning Tree Protocol on this example

(assume all links have “distance” 1)

Round 1

Receive Send Next-hop

1 (1, 0, 1) 1

2 (2, 0, 2) 2

3 (3, 0, 3) 3

4 (4, 0, 4) 4

5 (5, 0, 5) 5

6 (6, 0, 6) 6

7 (7, 0, 7) 7

Round 2
Receive Send Next

hop

1 (1, 0, 1)
(3, 0, 3), (5, 0, 5),

(6, 0, 6) 1

2 (2, 0, 2)
(3, 0, 3), (4, 0, 4),
(6, 0, 6), (7, 0, 7) 2

3 (3, 0, 3) (1, 0, 1), (2, 0, 2) (1, 1, 3) 1

4 (4, 0, 4) (2, 0, 2), (7, 0, 7) (2, 1, 4) 2

5 (5, 0, 5) (1, 0, 1), (6, 0, 6) (1, 1, 5) 1

6 (6, 0, 6)
(1, 0, 1), (2, 0, 2),

(5, 0, 5) (1, 1, 6) 1

7 (7, 0, 7) (2, 0, 2), (4, 0, 4) (2, 1, 7) 2

Round 3
Receive Send Next hop

1 (1, 0, 1)
(1, 1, 3), (1, 1, 5),

(1, 1, 6) 1

2 (2, 0, 2)
(1, 1, 3), (2, 1, 4),
(1, 1, 6), (2, 1, 7) (1, 2, 2)

3
(or 6)

3 (1, 1, 3) 1

4 (2, 1, 4) (2, 1, 7) 2

5 (1, 1, 5) (1, 1, 6) 1

6 (1, 1, 6) (1, 1, 5) 1

7 (2, 1, 7) (2,1, 4) 2

Round 4
Receive Send Next hop

1 (1, 0, 1) 1

2 (1, 2, 2) 3

3 (1, 1, 3) (1, 2, 2) 1

4 (2, 1, 4) (1, 2, 2) (1, 3, 4) 2

5 (1, 1, 5) 1

6 (1, 1, 6) (1, 2, 2) 1

7 (2, 1, 7) (1, 2, 2) (1, 3, 7) 2

Round 5
Receive Send Next

hop

1 (1, 0, 1) 1

2 (1, 2, 2) (1, 3, 4), (1, 3, 7) 3

3 (1, 1, 3) 1

4 (1, 3, 4) (1, 3, 7) 2

5 (1, 1, 5) 1

6 (1, 1, 6) 1

7 (1, 3, 7) (1, 3, 4) 2

After Round 5: We have our Spanning Tree

• 3-1
• 5-1
• 6-1
• 2-3
• 4-2
• 7-2

51

Questions?

• Protocol must react to failures
• Failure of the root node
• Failure of switches and links

• Root node sends periodic announcement messages

• Few possible implementations, but this is simple to understand
• Other switches continue forwarding messages

• Detecting failures through timeout (soft state)
• If no word from root, time out and send a (Y, 0, Y) message to all

neighbors (in the graph)!

• If multiple messages with a new root received, send message (Y, d, X)
to the neighbor sending the message

53

Spanning Tree Protocol ++ (incorporating failures)

Suppose link 2-4 fails

• 4 will send (4, 0, 4) to all its neighbors
• 4 will stop receiving announcement messages from the root
• Why?

• At some point, 7 will respond with (1, 3, 7)

• 4 will now update to (1, 4, 4) and send update message

• New spanning tree!

54

Questions?

