
Computer Networks:
Architecture and Protocols

CS4450

The LAST one.
Where’s the puck going?

Rachit Agarwal

Announcements
• Final exam

• 12/05, in-class

• Not unlimited time

• Review session
• Tomorrow, 1PM, zoom (see Ed Discussions)

• Material: everything covered in class

2

What Have We Done so far in reliable transport?

• Started from first principles

• Correctness condition for reliable transport

• … to understanding why feedback from receiver is necessary (sol-v1)

• … to understanding why timers may be needed (sol-v2)

• … to understanding why window-based design may be needed (sol-v3)

• … to understanding why cumulative ACKs may be a good idea

• Very close to modern TCP

3

What Have We Done so far in reliable transport?

• To understanding TCP-specific mechanisms
• Connections

• Segments, sequence numbers, ACKs

• Retransmissions (based on timeout, and duplicate ACKs)

• Flow control

• Congestion Control
• cwnd increase (no congestion)

• cwnd decrease (congestion, isolated & extreme)

• To understanding TCP properties
• Sawtooth behavior
• Convergence under stable state

• Max-min fair resource allocation

4

The Many Failings of TCP Congestion Control

1. Fills up queues (large queueing delays)
2. Every segment not ACKed is a loss (non-congestion related losses)
3. Produces irregular saw-tooth behavior
4. Biased against long RTTs (unfair)
5. Not designed for short flows
6. Easy to cheat

(1) TCP Fills Up Queues

• TCP only slows down when queues fill up

• High queueing delays

• Means that it is not optimized for latency

• What is it optimized for then?

• Answer: Fairness (discussion in next few slides)

• And many packets are dropped when buffer fills

• Alternative 1: Use small buffers

• Is this a good idea?

• Answer: No, bursty traffic will lead to reduced utilization

• Alternative: Random Early Drop (RED)
• Drop packets on purpose before queue is full

• A very clever idea, but results in unfairness

(2) Non-Congestion-Related Losses?

• If packets are corrupted (no congestion)

• TCP would think the network is congested

• Incorrect response!

• Several possible solutions:

• Can use Explicit Congestion Notification (ECN)
• As routers get congested, they mark the packet with ECN

• Thus, receiver can differentiate between corruption & congestion

(3) Sawtooth Behavior Uneven

• TCP throughput is “choppy"

• Repeated swings between W/2 to W

• Some apps would prefer sending at a steady rate

• E.g., streaming apps

• A solution: “Equation-based congestion control”

• Ditch TCP’s increase/decrease rules and just follow the equation:

• [Matthew Mathis, 1997] TCP Throughput = MSS/RTT sqrt(3/2p)
• Where p is drop rate

• Measure drop percentage p and set rate accordingly

• Following the TCP equation ensures we’re TCP friendly

• I.e., use no more than TCP does in similar setting

(4) Bias Against Long RTTs

• Flows get throughput inversely proportional to RTT

• TCP unfair in the face of heterogeneous RTTs!
• [Matthew Mathis, 1997] TCP Throughput = MSS/RTT sqrt(3/2p)

• Where p is drop rate

• Flows with long RTT will achieve lower throughput

A1 B1

A2 B2

100 ms

200 ms

Bottleneck Link

(5) How Short Flows Fare?

• Internet traffic:

• Elephant and mice flows

• Elephant flows carry most bytes (>95%), but are very few (<5%)

• Mice flows carry very few bytes, but most flows are mice

• 50% of flows have < 1500B to send (1 MTU);

• 80% of flows have < 100KB to send

• Problem with TCP?

• Mice flows do not have enough packets for duplicate ACKs!!

• Drop ~=~ Timeout (unnecessary high latency)

• These are precisely the flows for which latency matters!!!

• Another problem:

• Starting with small window size leads to high latency

(6) Cheating

• TCP was designed assuming a cooperative world

• No attempt was made to prevent cheating

• Many ways to cheat, will present three

Cheating #1: ACK-splitting (receiver)

• TCP Rule: grow window by one MSS
for each valid ACK received

• Send M (distinct) ACKs for one MSS

• Growth factor proportional to M

RTT

Data 1:1461

Data 1461:2921Data 2921:4381
Data 4381:5841
Data 5841:7301

ACK 486

ACK 973

ACK 1461

Cheating #2: Increasing CWND Faster (source)

• TCP Rule: increase window by one MSS for each valid ACK received

• Increase window by M per ACK

• Growth factor proportional to M

Cheating #3: Open Many Connections (source/receiver)

• Assume

• A start 10 connections to B

• D starts 1 connection to E

• Each connection gets about the same throughput

• Then A gets 10 times more throughput than D

A Bx

D E
y

Cheating

• Either sender or receiver can independently cheat!

• Why hasn’t Internet suffered congestion collapse yet?
• Individuals don’t hack TCP (not worth it)

• Companies need to avoid TCP wars

• How can we prevent cheating

• Verify TCP implementations

• Controlling end points is hopeless

• Nobody cares, really

Now you know about computer networking

as much as I do :-)

Taking 25 steps back!

17

A set of network elements connected together, that implement a set of
protocols for the purpose of sharing resources at the end hosts

What is a computer network?

Sharing networks

• Two approaches
• Reservation (circuit switching)

• Statistical multiplexing (packet switching)

• Motivation for WHY modern networks use “packets”

• How to implement this?

19

• Application opens a socket that allows it to connect to the network stack

• Maps name of the web site to its address using DNS

• The network stack at the source embeds the address and port for both
the source and the destination in packet header

• Each router constructs a routing table using a distributed algorithm

• Each router uses destination address in the packet header to look up the
outgoing link in the routing table

• And when the link is free, forwards the packet

• When a packet arrives the destination:

• The network stack at the destination uses the port to forward the
packet to the right application

The end-to-end story

• How to break system into modules

• Layering

• Where are modules implemented

• End-to-End Principle

• Where is state stored?
• Fate-Sharing

Realizing end-to-end design: Three Principles

• Application: Providing network support for apps

• Transport (L4): (Reliable) end-to-end delivery

• Network (L3): Global best-effort delivery

• Datalink (L2): Local best-effort delivery

• Physical (L1): Bits on wire

Five Layers (Top - Down)

• Broadcast medium: Ethernet and CSMA/CD

• We studied that Broadcast Ethernet does not scale to large networks
• Motivation for switched Ethernet

• Broadcast storm: if using broadcast on switched Ethernet
• Motivation for Spanning Tree Protocol

• Limitations of Spanning Tree Protocol:
• Low bandwidth utilization, high latency, unnecessary processing

• Does not scale to the entire Internet

• Motivation for routing protocols in the Internet

Link Layer (L2)

• Internet Protocol:
• Addressing, packet header as an interface, routing

• Routing tables:
• Correctness and validity: Dead ends, loops

• A collection of spanning trees, one per destination

• Constructing valid routing tables (within an ISP)
• Link-state and distance-vector protocols

• Focused a lot on learning via examples

• Can still have loops: failures remain to be a pain

• How to use routing tables
• Packet header as an interface
• Learnt why packet headers look like the way they do

Network Layer (L3)

• Internet Protocol:
• Addressing, packet header as an interface, routing

• Addressing:
• Link layer uses “flat” addresses

• Does not scale to Internet: motivation for IP addresses

• Scalability challenges: Routing table sizes, #updates

• Solution: Hierarchical addressing

• Forwarding
• Switch architecture
• Longest Prefix matching for forwarding at line rate

• Scheduling using priorities

Network Layer (L3), Cont.

• Internet Protocol:
• Addressing, packet header as an interface, routing

• Limitations of link-state and distance-vector routing:
• Require visibility of the entire Internet

• ISPs do not like that: motivation for Inter-domain routing

• Border Gateway Protocol
• A simple modification of distance-vector protocol

• Routing with policies
• Customer-provider-peer relationships
• Gao-Rexford policies

• Completes the network layer: provides connectivity

Network Layer (L3), Cont.

• DHCP: Dynamic Host Configuration Protocol
• For each host to figure out its IP address, local DNS, first-hop router

• ARP: Address Resolution Protocol
• For finding other servers on the same local area network (L2)

• Mapping from IP addresses to names (MAC addresses)

• Domain Name System
• Mapping Human readable destination names to IP addresses
• Hierarchical structure

Details for complete picture

• Goals of reliable transport

• Correctness condition

• Why do we need ACKs, timers, window-based design

• One realization of reliable transport: TCP
• Mostly implementation details following the above design

• For max-min fairness, flow performance and utilization

• Flow control
• Ensuring the sender does not overwhelm the receiver

• Via receiver advertised window size

• Congestion control
• Ensuring the sender does not overwhelm the network

• Slow start, Additive-increase Multiplicative-decrease, timeouts

Transport Layer

Taking 1 step forward!

29

Skate where the puck’s going,
not where it’s been!

- Walter Gretzky

Memory bus
(80 GB/s)

PCIe
(1x16 GB/s)

SATA
(0.05-0.1 GB/s)Et

he
rn

et

(1
.2

5
G

B/
s)

Size
(TB)

Random
Access

(us)

Seq.
Access
(GB/s)

0.1 0.1 80

1 25 1x

10 4000 0.1x

Where is the puck right now?

Memory bus
(80 GB/s)

PCIe
(1x16 GB/s)

SATA
(0.05-0.1 GB/s)Et

he
rn

et

(1
.2

5
G

B/
s)

Where is the puck going?

2016: +10%

2016: +18-20%

Where is the puck going? (CPU performance)

• #Cores: +18-20%

• Per core: +10%
Memory bus

PCIe

SATA

Et
he

rn
et

+30-32%

Where is the puck going?

+29%

Where is the puck going? (DRAM capacity)

Memory bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

> +33%

Tape is dead,
Disk is tape,
SSD is disk,
RAM is the king!

- Jim Gray

Where is the puck going?

+15%

Where is the puck going? (Memory bus)

Memory bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

> +33%

+15%

Tape is dead,
Disk is tape,
SSD is disk,
RAM is the king!

- Jim Gray

Where is the puck going?

Ba
nd

w
id

th
 p

er
 la

ne
 (G

bp
s)

0

4

8

12

16

Year
2002 2004 2006 2008 2010 2012 2014 2016 2018

+15%

Where is the puck going? (PCIe)

Memory bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

> +33%

+15%

+15%

Tape is dead,
Disk is tape,
SSD is disk,
RAM is the king!

- Jim Gray

+20%

Where is the puck going?

+33-40%

Where is the puck going? (Ethernet)

Memory bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

> +33%

Tape is dead,
Disk is tape,
SSD is disk,
RAM is the king!

- Jim Gray

+15%

+15%

+20%

+33-40%

Where is the puck going?

Powerful

implications

• Unsustainable CPU overheads of network stacks

• End-to-end latency dominated by queueing delay

• Remote memory faster than local SSD

• When queueing delay = 0

Network Technology Trends

0

25

50

75

100

2005 2010 2018 2023

Bandwidth

Unsustainable CPU overheads

0

25

50

75

100

2005 2010 2018 2023

Bandwidth

• Existing network stacks were designed for 1Gbps networks
• Known TCP problem: ~3.2Gbps per core

• With low-level optimizations: ~9-12Gbps per core

• 40Gbps would take >3 cores per server!

• 100Gbps would take >8 cores per server!!

• Take away: unsustainable cloud economics
• Every core used for the stack is a core stolen from applications/

customers

0

25

50

75

100

2005 2010 2018 2023

Bandwidth

~2005 (1Gbps) 2018 (40Gbps)
Latency (us) %

Contri
Latency (us) %

OS 1.90 10 1.70 27
Data copy 2.00 10 2.00 32
Switching 2.70 14 1.44 23

Propagawon delay 0.88 5 0.88 13

Transmission delay 11.44 61 0.29 5

TOTAL 18.92 6.30

Queueing
(4MB buffers, 64 ports)

488.3
(per congespon point)

12.21
(per congespon point)

Curse of queueing delay

~2005 (1Gbps) 2018 (40Gbps)
Latency (us) %

Contri
Latency (us) %

TOTAL 18.92 6.30

Queueing
(4MB buffers, 64 ports)

488.3
(per congespon point)

12.21
(per congespon point)

• Take away: queueing delay is the core bottleneck
• End-to-end latency bottlenecked by queueing delay

0

25

50

75

100

2005 2010 2018 2023

Bandwidth

• Under zero queueing:
• Remote memory access takes less than 6.3us

• Local SSD access latency today is 25us (hardware, ignoring stack)

• Remote Direct Memory Access (RDMA) becomes feasible

• However, RDMA requires lossless network fabric
• Known problem with RDMA over Ethernet: congestion collapse

• Take away: RDMA applicability limited by drops in network fabric

Remote Memory Faster than Local Storage

• Lot of research in “hardware offload”
• Implementing TCP (and other mechanisms) on hardware

• Lots of interesting challenges

• Lot of research in low-latency transport design
• TCP was not designed for low latency

• New transport protocols for ultra low-latency

• Lot of research in kernel-bypass
• TCP requires processing each and every packet

• 1Gbps links: 90,000 packets per second

• 100Gbps links: 9 million packets per second

• Extremely high CPU requirements

• Bypass the kernel entirely

• Implement congestion control in user space, in hardware?

Current Network Stacks are the Bottleneck!

• These are exciting times for computer networking
• The first ever since the invention of the Internet

• You are witness to the transformation!!!!

• And, I am glad I got the chance to introduce you to this world :-)
• You have made me a better teacher!!!!

• Thank you.

• Wherever you end up:
• Please remember me

• Say hello if you see me

• Remember, there is nothing more important than

• Knowing the fundamentals!!!!
• Being happy!!!!

Closing Thoughts

