
Computer Networks:
Architecture and Protocols

CS4450

Lecture 22
Reliable Transport

Rachit Agarwal

1

Where are we?

• Application opens a socket that allows it to connect to the network stack

• Maps name of the web site to its address using DNS

• The network stack at the source embeds the address and port for both
the source and the destination in packet header

• Each router constructs a routing table using a distributed algorithm

• Each router uses destination address in the packet header to look up the
outgoing link in the routing table

• And when the link is free, forwards the packet

• When a packet arrives the destination:
• The network stack at the destination uses the port to forward the

packet to the right application

Recall the end-to-end story from our fifth lecture!

You now know how the Internet works!!!!

All that is remaining:

Reliability.

Goal of Today’s Lecture

• Understanding reliable transport conceptually
• What are the fundamental aspects of reliable transport

• Back to architectural principles for one lecture

• The goal is not to understand a particular protocol (e.g., TCP)
• TCP involves lots of detailed mechanisms, covered later

• Ground rules for discussion
• No mention of TCP
• No mention of detailed practical issues
• Focus only on “ideal” world of packets and links

5

You must think for yourself

• Today’s lecture requires you to engage
• How would I design a reliable service

• I will ask a lot of questions today, want you to think about them
• Be that kid!

6

Decisions and Their Principles

• How to break system into modules?
• Dictated by layering

• Where are modules implemented?
• Dictated by End-to-End Principle

• Where state is stored?
• Dictated by fate-sharing

7

Today We Design Reliable Delivery

• The end-to-end principle tells us?
• Put reliability in the end-host, not the network

• Layering dictates putting reliability in what layer?
• Above network layer
• L4 focusses on process-to-process delivery (“flow”)

• Fate sharing tells us?
• Keep all reliability state in ends, not in network

8

Best Effort Service (L3)

• Packets can be lost
• Packets can be corrupted
• Packets can be reordered
• Packets can be delayed
• Packets can be duplicated
• …

How can you possible make anything work
with such a service model?

9

Making Best Effort Service Work

• Engineer network so that average case is decent
• You can’t make guarantees, but the operator must try…

• Engineer apps so they can tolerate the worst cast
• They don’t have to thrive, they just can’t die

• A classical case of architecting for flexibility
• And then engineering for performance

10

Reliable Transport is Necessary

• Some app semantics involve reliable transport
• E.g., file transfer

• Layer 3 and below provide only unreliable packet delivery

• Today’s question:
• How can we build a reliable transport service on top of arbitrary

unreliable packet delivery?

• A central challenge in bridging the gap between
• The abstractions application designers want
• The abstractions networks can easily support

11

Important Distinctions

• For functionality implemented in network:
• Keep minimal (easy to build, broadly applicable)

• For functionality implemented in the application:
• Keep minimal (easy to write)
• Restricted to application-specific functionality

• Functionality implemented in “network stack”
• The shared networking code on the host
• This relieves burden from both application and network
• This is where reliability belongs

12

Two Different Statements

• Some applications need reliable service
• This means that application writers should be able to assume this,

to make their job easier

• The network must provide reliable service
• This contends that applications cannot implement this

functionality, so the network must provide it

• Today we’re making the first statement and refuting the second…
• And this simple observation is what advocates of reliable

networks (as in telephony) never understood

13

Challenge For Today

• Building a stack that supports reliable transfer
• So that individual applications don’t need to deal with packet

losses, etc.

• What mechanisms can we put in the transport layer to provide reliability?

• Reliability is focused on single “flow”
• Flow: stream of packets between two processes
• Usually defined using the 5-tuple:

• (sourceIP, destIP, sourcePort, destPort, protocol)

14

Four Goals for Reliable Transfer

• Correctness
• To be defined

• “Fairness”
• Every flow must get a fair share of network resources

• Flow Performance
• Latency, jitter, etc.

• Utilization
• Would like to maximize bandwidth utilization
• If network has bandwidth available, flows should be able to use it!

15

Start With Transfer of a Single Packet

• We can later worry about larger files, but in the beginning it is cleaner
to focus on this simple case

16

Correctness Condition

• Routing had a clean correctness condition

• We want same kind of “if and only if” characterization of “correct”
reliable transport designs

• This condition is for the design to be correct, not the best performant

• One obvious requirement:
• Transport never claims to have delivered data that wasn’t delivered…

• But we need more than that. What?

17

Correctness Condition?

• How about: “Packet is always delivered to receiver”?

• i.e., Transport is reliable if and only if packets are always delivered to
the receiver…

• Isn’t that simple?

18

WRONG!

• What if network is partitioned?
• Partitioned means that the network is broken into two or more

disconnected components…

• We can’t claim a transport design is incorrect if it doesn’t work in a
partitioned network!

• After all, there is no way to reach the destination!

19

Correctness Condition?

• Packet is delivered to receiver if and only if its possible to deliver packet

20

WRONG!

• If the network is only available at one instant of time, only an Oracle
would know when to send

• We can’t claim a transport design is incorrect if it doesn’t know the
unknowable…

• So we need to focus on what the transport design is trying to do, not
what it actually accomplishes

21

Correctness Condition?

• Resend packet if and only if the previous transmission was lost or
corrupted

• This is better because it refers to:
• what the design does (which it can control)
• not whether it always succeeds (which it can’t)

22

WRONG!

• Impossible
• “Coordinated Attack” over an unreliable network

• Consider two cases:
• Packet delivered; all packets from receiver are dropped
• Packet dropped; all packets from receiver are dropped

• They are indistinguishable to sender
• In both cases, packet was sent, and no feedback at all
• Does it resend, or not?

23

Correctness Condition?

• Packet is always resent if the previous transmission was lost or corrupted

• Packet may be resent at other times

• Note:
• This invariant gives us a simple criterion for deciding if an

implementation is correct

• Efficiency and simplicity are separate criteria

24

Almost Right!

• What’s wrong with it?

• An implementation that never sent the packet at all is reliable according
to the definition.

25

Complete Correctness Condition

• A transport mechanism is “reliable” if and only if
(a) It resends all dropped or corrupted packets
(b) It attempts to make progress

• Making progress means:
• If there is data to send, transport eventually attempts to send data

• Very important: “eventually attempts”!

• It should not be blocked for ever

• And, it may not succeed, but it must attempt

• Example: If there are ten packets to send, transport can’t just send
the first five and then stop for ever

26

Complete Correctness Condition

• A transport mechanism is “reliable” if and only if
(a) It resends all dropped or corrupted packets
(b) It attempts to make progress

• Sufficient (“if”): transport algorithm will keep trying to deliver packets
that have not yet reached the destination

• Necessary (“only if”): if it ever lets a packet go undelivered without
trying again, or never tries to send a packet when all others have been
delivered, it isn’t reliable

27

Note!

• A transport mechanism can “give up”, but must announce this to
application

• If the transport mechanism has tried for some period to deliver the
data, and has not succeeded:

• It might decide that it is better to give up

• And applications can reinitiate data transfer

• That is allowed…

• But it can never falsely claim to have delivered a packet

28

We have the correctness condition

• How do we achieve it?

• Focus on single-packet solutions

29

Solution v1

• Send every packet as often and fast as possible…

• Is it correct
• No.
• Why?
• The “if” condition is not satisfied:

(a) Transport must attempt to make progress
• No way to check whether the packet was dropped or corrupted

• So, must continue sending the same packet

30

What’s missing?

• Feedback from receiver!

• If receiver does not respond, no way for sender to tell when to stop
resending

• Cannot achieve correctness without feedback

31

Forms of Feedback

• ACK: Yes, I got a packet

• NACK: No, I did not get the packet

• When is NACK a natural idea?
• Packet Corruption (I got packet#5 but it was corrupted)

• Ignore NACKs for rest of the lecture…

32

Solution v2

• Resend packet until you get an ACK
• And receiver sends per-packet ACKs until data finally stops

• Correct?
• Yes:

• All dropped/corrupted packets will be retransmitted
• The transport will attempt to make progress

• Fair?
• Over long-term, yes:

• all sources will get an equal chance to use network resources

• Flow performance?
• Good but not necessarily optimal

• Some packets may be retransmitted unnecessarily

• Efficiency:
• suboptimal; packets retransmitted unnecessarily

33

Solution v3

• Send packet
• But now, set a timer

• When receiver gets packet, sends ACK
• If sender receives ACK, done
• If no ACK when timer expires, resend

• Still correct, and fair
• Performance would argue for small timeout
• Utilization would argue for larger timeout

• May want to increase timer each time you try
• May want to cap the number of retries
• Problems with this design?

34

Have “Solved” the Single Packet Case

• Send packet
• Set a timer

• If no ACK when timer goes off, resend packet
• And reset timer

• Tradeoff between performance and utilization in selection of timeout:
• Too small: unnecessary retransmissions (underutilization)
• Too large: waiting unnecessarily (poor performance)

35

Multiple Packets

• Service model: reliable stream of packets
• Hand up contiguous block of packets to application

• Why not use single-packet solution?
• Send the next packet once the first one has been delivered
• Problem: Only one packet in flight at a time

• Low Effective throughput: Packet Size / RTT

• Use window based approach
• Allow for a window of W packets in-flight at any time (unack’ed)
• Slide the window as packets are ack’ed
• Sliding window implies W packets are continuous

36

Window-based Algorithms

• Very simple concept
• Send W packets
• When one gets ACK’ed send the next packet in line
• It really is that simple (until we got to TCP)

• Will consider several variations…
• But first…

37

How Big Should the Window be?

• Windows serve three purposes
• Taking advantage of the bandwidth of the links
• Limiting bandwidth used by a flow (congestion control)
• Limiting the amount of buffering needed at the receiver

• Why do receivers need to buffer packets?
• Answer: packet re-ordering (discussed later)

• If we ignore all but the first goal, then we want to keep the sender
always sending (in the ideal case)

• RTT: from sending first packet until received first ACK

• Condition:
• RTT x B ~ W x Packet Size

38

What does this mean?

• B is the minimum link bandwidth along the path
• Obviously shouldn’t send faster than that
• Don’t want to send slower than that (for first goal)

• We want to set W such that:
• if I am sending at rate B, then
• the ACK of the first packet arrives
• exactly when I just finish sending the last of my W packets

• Lets me send as fast as the path can deliver…

39

RTT x B ~ W x Packet Size

• Recall that Bandwidth Delay Product
• BDP = bandwidth x propagation delay

• B x RTT is merely 2x BDP

• Window sizing rule:
• Total bits in flight is roughly the amount of data that fits into

forward and reverse “pipes”
• Here pipe is complete path, not single link…
• This is not “detail”, this is a fundamental concept…

bandwidth

Propagation delay

delay x bandwidth

40

Where Are We?

• Figured out correctness condition:
• Always resend lost/corrupted packets
• Always try to make progress (but can give up entirely)

• Figured out single packet case:
• Send packet, set timer, resend if no ACK when timer expires

• Some progress towards multiple packet case:
• Allow many packets (W) in flight at once
• And know what the ideal window size is

• RTT x B / Packet size

• What’s left to design?

41

Three Design Considerations

• Nature of feedback
• What should ACKs tell us when we have many packets in flight

• Detection of loss

• Response to loss

42

Possible Feedback From Receiver

• Ideas?

43

ACK Individual Packets

• Strengths
• Know fate of each packet
• Reordering not a problem
• Simple window algorithm

• W independent single packet algorithms
• When one finishes grab next packet

• Weaknesses?
• Loss of ACK packet requires a retransmission

44

Full Information Feedback

• List all packets that have been received
• Give highest cumulative ACK plus any additional packets
• If packets 1, 2, 3, 5, 6 received: send ACK(3, 5, 6)

• Strengths?
• As much information as you could hope for
• Resilient form of individual ACKs

• Weaknesses?
• Could require sizable overhead in bad cases
• Feasible if only small holes

• If packets 1, 5, 6, …., 100 received: ACK(1, 5, 6, …,100)

45

Cumulative ACK

• ACK the highest sequence number for which all previous packets have
been received
• Implementations often send back “next expected packet”, but that’s

just a detail

• Strengths?
• Resilient to lost ACKs

• Weaknesses?
• Confused by reordering
• Incomplete information about which packets have arrived

46

Detecting Loss

• If packet times out, assume it is lost…

• How else can you detect loss?

47

Loss With Individual ACKs

• Assume that packet 5 is lost, but no others

• Stream of ACKs will be
• 1
• 2
• 3
• 4
• 6
• 7
• 8
• …

48

Loss With Individual ACKs

• Could resend packet when k “subsequent packets” are received

• Response to loss
• Resend missing packet
• Continue window based protocol

49

Loss With Full Information

• Same story, except that the “hole” is explicit in each ACK

• Stream of ACKs will be
• Up to 1
• Up to 2
• Up to 3
• Up to 4
• Up to 4, plus 6
• Up to 4, plus 6,7
• Up to 4, plus 6,7,8
• …

50

Loss With Full Information

• Could resend packet when k “subsequent packets” are received

• Response to loss
• Resend missing packet
• Continue window-based protocol

51

Loss With Cumulative ACKs

• Assume packet 5 is lost, but no others

• Stream of ACKs will be
• 1
• 2
• 3
• 4
• 4 (Sent when packet 6 arrives)
• 4 (Sent when packet 7 arrives)
• 4 (Sent when packet 8 arrives)
• …

52

Loss With Cumulative ACKs (cont’d)

• Duplicate ACKs are a sign of an isolated loss
• The lack of ACK progress means 5 hasn’t been delivered
• Stream of duplicate ACKs means some packets are being delivered

(one for each subsequent packet)

• Therefore could trigger resend upon receiving k duplicate ACKs

• But response to loss is trickier…

53

Loss With Cumulative ACKs (cont’d 2)

• Two choices
• Send missing packet and optimistically assume that subsequent

packets have arrived
• i.e., increase W by the number of duplicate ACKs

• Send missing packet, wait for ACK

• Timeout-detected losses also problematic
• If packet 5 times out, packet 6 is about to timeout also
• Do you resend both?
• Do you resend 5 and wait?
• …

54

Cumulative ACKs

• They make no sense, except as a cheap alternative to full information
• Less state than full information
• More resilient than individual ACKs

• But ambiguity in feedback leads to many problems
• Have other packets arrived?

• Makes retransmission and congestion window management hard

• Will deal with these issues when we come to TCP

55

All The Bad Things Best Effort Can Do

• Packets can be lost

• Packets can be corrupted

• Packets can be reordered

• Packets can be delayed

• Packets can be duplicated

56

Effect of Reordering?

• For all designs this looks like “subsequent ACKs”

• This can be mistaken for packet loss

• Hard to realize the difference between these packet arrival patterns:
• 1, 2, 3, 4, 6, 7, 8, 9,…
• 1, 2, 3, 4, 6, 7, 8, 9, 5, 10,…

57

Effect of Long Delays?

• Possible timeouts (for all designs)

58

Effect of Duplication

• Produce duplicate ACKs
• Could be confused for loss with cumulative ACKs
• But duplication is rare…

59

Possible Design For Reliable Transport

• Full information ACKs

• Window based, with retransmissions after
• Timeout
• K subsequent ACKs

• This is correct, high-performant and high-utilization

• How about fairness?

60

Fairness? (Come back to later)

• Adjust W based on losses…

• In a way that flows receive same shares

• Short version:
• Loss: cut W by 2
• Successful receipt of window: W increased by 1

61

Overview of Reliable Transport

• Window based self control separate concerns
• Size of W
• Nature of feedback
• Response to loss

• Can design each aspect relatively independently

• Can be correct, fair, high-performant and high-utilization

62

Many Implementation Choices

• Feedback from receiver: ACKs vs NACKs
• Can NACKs alone achieve correctness
• Can ACKs alone achieve correctness

• Variations on ACKs
• Full information
• Individual packets
• Cumulative

• When to resend
• Timeout
• Duplicate ACKs
• NACKs

63

Implementation Choices

• These implementation choices affect:
• Performance
• Utilization
• Fairness
• ..

• These are important concerns
• But correctness is more fundamental

• Design must start with correctness
• Can then “engineer” its performance with various hacks
• These shacks can be “fun”, but don’t let them distract you

64

What Have We Done Today?

• Gone from first principles
• Correctness condition for reliable transport

• … to design for single packets

• … to design for multiple packets
• Very close to modern TCP

• … to radically different designs
• Which could replace TCP

• All done by you, in 75 minutes

65

