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Where are we?



• Application opens a socket that allows it to connect to the network stack 

• Maps name of the web site to its address using DNS 

• The network stack at the source embeds the address and port for both 
the source and the destination in packet header 

• Each router constructs a routing table using a distributed algorithm 

• Each router uses destination address in the packet header to look up the 
outgoing link in the routing table 

• And when the link is free, forwards the packet  

• When a packet arrives the destination:  
• The network stack at the destination uses the port to forward the 

packet to the right application

Recall the end-to-end story from our fifth lecture!



You now know how the Internet works!!!!

All that is remaining: 

Reliability.



Goal of Today’s Lecture

• Understanding reliable transport conceptually 
• What are the fundamental aspects of reliable transport 

• Back to architectural principles for one lecture 

• The goal is not to understand a particular protocol (e.g., TCP) 
• TCP involves lots of detailed mechanisms, covered later 

• Ground rules for discussion 
• No mention of TCP 
• No mention of detailed practical issues 
• Focus only on “ideal” world of packets and links
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You must think for yourself

• Today’s lecture requires you to engage 
• How would I design a reliable service 

• I will ask a lot of questions today, want you to think about them 
• Be that kid!
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Decisions and Their Principles

• How to break system into modules? 
• Dictated by layering 

• Where are modules implemented? 
• Dictated by End-to-End Principle 

• Where state is stored? 
• Dictated by fate-sharing
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Today We Design Reliable Delivery

• The end-to-end principle tells us? 
• Put reliability in the end-host, not the network 

• Layering dictates putting reliability in what layer? 
• Above network layer 
• L4 focusses on process-to-process delivery (“flow”) 

• Fate sharing tells us? 
• Keep all reliability state in ends, not in network
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Best Effort Service (L3)

• Packets can be lost 
• Packets can be corrupted 
• Packets can be reordered 
• Packets can be delayed 
• Packets can be duplicated 
• …

How can you possible make anything work  
with such a service model?
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Making Best Effort Service Work

• Engineer network so that average case is decent 
• You can’t make guarantees, but the operator must try… 

• Engineer apps so they can tolerate the worst cast 
• They don’t have to thrive, they just can’t die 

• A classical case of architecting for flexibility 
• And then engineering for performance
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Reliable Transport is Necessary

• Some app semantics involve reliable transport 
• E.g., file transfer 

• Layer 3 and below provide only unreliable packet delivery 

• Today’s question: 
• How can we build a reliable transport service on top of arbitrary 

unreliable packet delivery? 

• A central challenge in bridging the gap between 
• The abstractions application designers want 
• The abstractions networks can easily support
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Important Distinctions

• For functionality implemented in network: 
• Keep minimal (easy to build, broadly applicable) 

• For functionality implemented in the application: 
• Keep minimal (easy to write) 
• Restricted to application-specific functionality 

• Functionality implemented in “network stack” 
• The shared networking code on the host 
• This relieves burden from both application and network 
• This is where reliability belongs
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Two Different Statements

• Some applications need reliable service 
• This means that application writers should be able to assume this, 

to make their job easier 

• The network must provide reliable service 
• This contends that applications cannot implement this 

functionality, so the network must provide it 

• Today we’re making the first statement and refuting the second… 
• And this simple observation is what advocates of reliable 

networks (as in telephony) never understood
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Challenge For Today

• Building a stack that supports reliable transfer  
• So that individual applications don’t need to deal with packet 

losses, etc. 

• What mechanisms can we put in the transport layer to provide reliability?  

• Reliability is focused on single “flow”  
• Flow: stream of packets between two processes 
• Usually defined using the 5-tuple: 

• (sourceIP, destIP, sourcePort, destPort, protocol)
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Four Goals for Reliable Transfer

• Correctness 
• To be defined 

• “Fairness” 
• Every flow must get a fair share of network resources  

• Flow Performance 
• Latency, jitter, etc. 

• Utilization  
• Would like to maximize bandwidth utilization 
• If network has bandwidth available, flows should be able to use it!
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Start With Transfer of a Single Packet

• We can later worry about larger files, but in the beginning it is cleaner 
to focus on this simple case
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Correctness Condition

• Routing had a clean correctness condition  

• We want same kind of “if and only if” characterization of “correct” 
reliable transport designs 

• This condition is for the design to be correct, not the best performant 

• One obvious requirement: 
• Transport never claims to have delivered data that wasn’t delivered… 

• But we need more than that. What?
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Correctness Condition?

• How about: “Packet is always delivered to receiver”? 

• i.e., Transport is reliable if and only if packets are always delivered to 
the receiver… 

• Isn’t that simple?
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WRONG!

• What if network is partitioned? 
• Partitioned means that the network is broken into two or more 

disconnected components… 

• We can’t claim a transport design is incorrect if it doesn’t work in a 
partitioned network! 

• After all, there is no way to reach the destination!
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Correctness Condition?

• Packet is delivered to receiver if and only if its possible to deliver packet
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WRONG!

• If the network is only available at one instant of time, only an Oracle 
would know when to send 

• We can’t claim a transport design is incorrect if it doesn’t know the 
unknowable… 

• So we need to focus on what the transport design is trying to do, not 
what it actually accomplishes
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Correctness Condition?

• Resend packet if and only if the previous transmission was lost or 
corrupted 

• This is better because it refers to:  
• what the design does (which it can control) 
• not whether it always succeeds (which it can’t)
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WRONG!

• Impossible 
• “Coordinated Attack” over an unreliable network 

• Consider two cases: 
• Packet delivered; all packets from receiver are dropped 
• Packet dropped; all packets from receiver are dropped 

• They are indistinguishable to sender 
• In both cases, packet was sent, and no feedback at all 
• Does it resend, or not?
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Correctness Condition?

• Packet is always resent if the previous transmission was lost or corrupted 

• Packet may be resent at other times 

• Note: 
• This invariant gives us a simple criterion for deciding if an 

implementation is correct 

• Efficiency and simplicity are separate criteria
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Almost Right!

• What’s wrong with it? 

• An implementation that never sent the packet at all is reliable according 
to the definition. 
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Complete Correctness Condition

• A transport mechanism is “reliable” if and only if  
(a) It resends all dropped or corrupted packets 
(b) It attempts to make progress 

• Making progress means: 
• If there is data to send, transport eventually attempts to send data 

• Very important: “eventually attempts”! 

• It should not be blocked for ever 

• And, it may not succeed, but it must attempt 

• Example: If there are ten packets to send, transport can’t just send 
the first five and then stop for ever
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Complete Correctness Condition

• A transport mechanism is “reliable” if and only if  
(a) It resends all dropped or corrupted packets 
(b) It attempts to make progress 

• Sufficient (“if”): transport algorithm will keep trying to deliver packets 
that have not yet reached the destination 

• Necessary (“only if”): if it ever lets a packet go undelivered without 
trying again, or never tries to send a packet when all others have been 
delivered, it isn’t reliable
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Note!

• A transport mechanism can “give up”, but must announce this to 
application 

• If the transport mechanism has tried for some period to deliver the 
data, and has not succeeded: 

• It might decide that it is better to give up 

• And applications can reinitiate data transfer 

• That is allowed… 

• But it can never falsely claim to have delivered a packet 
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We have the correctness condition

• How do we achieve it? 

• Focus on single-packet solutions
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Solution v1

• Send every packet as often and fast as possible… 

• Is it correct 
• No.  
• Why? 
• The “if” condition is not satisfied: 

(a) Transport must attempt to make progress 
• No way to check whether the packet was dropped or corrupted 

• So, must continue sending the same packet
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What’s missing?

• Feedback from receiver! 

• If receiver does not respond, no way for sender to tell when to stop 
resending 

• Cannot achieve correctness without feedback
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Forms of Feedback

• ACK: Yes, I got a packet 

• NACK: No, I did not get the packet 

• When is NACK a natural idea? 
• Packet Corruption (I got packet#5 but it was corrupted) 

• Ignore NACKs for rest of the lecture…
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Solution v2

• Resend packet until you get an ACK 
• And receiver sends per-packet ACKs until data finally stops  

• Correct? 
• Yes:  

• All dropped/corrupted packets will be retransmitted 
• The transport will attempt to make progress 

• Fair? 
• Over long-term, yes: 

• all sources will get an equal chance to use network resources 

• Flow performance? 
• Good but not necessarily optimal  

• Some packets may be retransmitted unnecessarily 

• Efficiency:  
• suboptimal; packets retransmitted unnecessarily
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Solution v3

• Send packet 
• But now, set a timer 

• When receiver gets packet, sends ACK 
• If sender receives ACK, done 
• If no ACK when timer expires, resend 

• Still correct, and fair 
• Performance would argue for small timeout 
• Utilization would argue for larger timeout 

• May want to increase timer each time you try 
• May want to cap the number of retries 
• Problems with this design?
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Have “Solved” the Single Packet Case

• Send packet 
• Set a timer 

• If no ACK when timer goes off, resend packet 
• And reset timer 

• Tradeoff between performance and utilization in selection of timeout: 
• Too small: unnecessary retransmissions (underutilization) 
• Too large: waiting unnecessarily (poor performance)
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Multiple Packets

• Service model: reliable stream of packets 
• Hand up contiguous block of packets to application  

• Why not use single-packet solution? 
• Send the next packet once the first one has been delivered 
• Problem: Only one packet in flight at a time 

• Low Effective throughput: Packet Size / RTT 

• Use window based approach 
• Allow for a window of W packets in-flight at any time (unack’ed) 
• Slide the window as packets are ack’ed 
• Sliding window implies W packets are continuous

36



Window-based Algorithms

• Very simple concept 
• Send W packets 
• When one gets ACK’ed send the next packet in line  
• It really is that simple (until we got to TCP) 

• Will consider several variations… 
• But first…
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How Big Should the Window be?

• Windows serve three purposes 
• Taking advantage of the bandwidth of the links 
• Limiting bandwidth used by a flow (congestion control) 
• Limiting the amount of buffering needed at the receiver 

• Why do receivers need to buffer packets? 
• Answer: packet re-ordering (discussed later) 

• If we ignore all but the first goal, then we want to keep the sender 
always sending (in the ideal case)  

• RTT: from sending first packet until received first ACK 

• Condition:  
• RTT x B ~ W x Packet Size
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What does this mean?

• B is the minimum link bandwidth along the path 
• Obviously shouldn’t send faster than that 
• Don’t want to send slower than that (for first goal) 

• We want to set W such that: 
• if I am sending at rate B, then 
• the ACK of the first packet arrives 
• exactly when I just finish sending the last of my W packets 

• Lets me send as fast as the path can deliver…
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RTT x B ~ W x Packet Size

• Recall that Bandwidth Delay Product 
• BDP = bandwidth x propagation delay 

• B x RTT is merely 2x BDP 

• Window sizing rule:  
• Total bits in flight is roughly the amount of data that fits into 

forward and reverse “pipes” 
• Here pipe is complete path, not single link… 
• This is not “detail”, this is a fundamental concept…

bandwidth

Propagation delay

delay x bandwidth
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Where Are We?

• Figured out correctness condition: 
• Always resend lost/corrupted packets 
• Always try to make progress (but can give up entirely) 

• Figured out single packet case: 
• Send packet, set timer, resend if no ACK when timer expires 

• Some progress towards multiple packet case: 
• Allow many packets (W) in flight at once 
• And know what the ideal window size is 

• RTT x B / Packet size 

• What’s left to design?
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Three Design Considerations

• Nature of feedback 
• What should ACKs tell us when we have many packets in flight 

• Detection of loss 

• Response to loss
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Possible Feedback From Receiver

• Ideas?
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ACK Individual Packets

• Strengths 
• Know fate of each packet 
• Reordering not a problem 
• Simple window algorithm 

• W independent single packet algorithms 
• When one finishes grab next packet 

• Weaknesses? 
• Loss of ACK packet requires a retransmission
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Full Information Feedback

• List all packets that have been received 
• Give highest cumulative ACK plus any additional packets 
• If packets 1, 2, 3, 5, 6 received: send ACK(3, 5, 6) 

• Strengths? 
• As much information as you could hope for 
• Resilient form of individual ACKs 

• Weaknesses? 
• Could require sizable overhead in bad cases 
• Feasible if only small holes 

• If packets 1, 5, 6, …., 100 received: ACK(1, 5, 6, …,100)
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Cumulative ACK

• ACK the highest sequence number for which all previous packets have 
been received 
• Implementations often send back “next expected packet”, but that’s 

just a detail 

• Strengths? 
• Resilient to lost ACKs 

• Weaknesses? 
• Confused by reordering 
• Incomplete information about which packets have arrived
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Detecting Loss 

• If packet times out, assume it is lost… 

• How else can you detect loss?
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Loss With Individual ACKs

• Assume that packet 5 is lost, but no others  

• Stream of ACKs will be 
• 1 
• 2 
• 3 
• 4 
• 6 
• 7 
• 8 
• …
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Loss With Individual ACKs

• Could resend packet when k “subsequent packets” are received 

• Response to loss 
• Resend missing packet 
• Continue window based protocol
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Loss With Full Information

• Same story, except that the “hole” is explicit in each ACK 

• Stream of ACKs will be 
• Up to 1 
• Up to 2 
• Up to 3 
• Up to 4 
• Up to 4, plus 6 
• Up to 4, plus 6,7 
• Up to 4, plus 6,7,8 
• …
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Loss With Full Information

• Could resend packet when k “subsequent packets” are received  

• Response to loss 
• Resend missing packet 
• Continue window-based protocol
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Loss With Cumulative ACKs

• Assume packet 5 is lost, but no others 

• Stream of ACKs will be 
• 1 
• 2 
• 3 
• 4 
• 4 (Sent when packet 6 arrives) 
• 4 (Sent when packet 7 arrives) 
• 4 (Sent when packet 8 arrives) 
• …
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Loss With Cumulative ACKs (cont’d)

• Duplicate ACKs are a sign of an isolated loss 
• The lack of ACK progress means 5 hasn’t been delivered  
• Stream of duplicate ACKs means some packets are being delivered 

(one for each subsequent packet) 

• Therefore could trigger resend upon receiving k duplicate ACKs 

• But response to loss is trickier…
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Loss With Cumulative ACKs (cont’d 2)

• Two choices 
• Send missing packet and optimistically assume that subsequent 

packets have arrived 
• i.e., increase W by the number of duplicate ACKs 

• Send missing packet, wait for ACK 

• Timeout-detected losses also problematic 
• If packet 5 times out, packet 6 is about to timeout also 
• Do you resend both? 
• Do you resend 5 and wait? 
• …
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Cumulative ACKs

• They make no sense, except as a cheap alternative to full information  
• Less state than full information 
• More resilient than individual ACKs 

• But ambiguity in feedback leads to many problems 
• Have other packets arrived?  

• Makes retransmission and congestion window management hard  

• Will deal with these issues when we come to TCP
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All The Bad Things Best Effort Can Do

• Packets can be lost 

• Packets can be corrupted 

• Packets can be reordered 

• Packets can be delayed 

• Packets can be duplicated
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Effect of Reordering?

• For all designs this looks like “subsequent ACKs” 

• This can be mistaken for packet loss 

• Hard to realize the difference between these packet arrival patterns: 
• 1, 2, 3, 4, 6, 7, 8, 9,… 
• 1, 2, 3, 4, 6, 7, 8, 9, 5, 10,…
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Effect of Long Delays?

• Possible timeouts (for all designs)
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Effect of Duplication

• Produce duplicate ACKs  
• Could be confused for loss with cumulative ACKs 
• But duplication is rare…
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Possible Design For Reliable Transport 

• Full information ACKs 

• Window based, with retransmissions after  
• Timeout  
• K subsequent ACKs 

• This is correct, high-performant and high-utilization 

• How about fairness?
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Fairness? (Come back to later)

• Adjust W based on losses… 

• In a way that flows receive same shares 

• Short version: 
• Loss: cut W by 2 
• Successful receipt of window: W increased by 1
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Overview of Reliable Transport

• Window based self control separate concerns  
• Size of W 
• Nature of feedback 
• Response to loss 

• Can design each aspect relatively independently  

• Can be correct, fair, high-performant and high-utilization
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Many Implementation Choices

• Feedback from receiver: ACKs vs NACKs 
• Can NACKs alone achieve correctness 
• Can ACKs alone achieve correctness 

• Variations on ACKs 
• Full information 
• Individual packets 
• Cumulative 

• When to resend 
• Timeout 
• Duplicate ACKs 
• NACKs
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Implementation Choices

• These implementation choices affect: 
• Performance  
• Utilization 
• Fairness 
• .. 

• These are important concerns 
• But correctness is more fundamental 

• Design must start with correctness  
• Can then “engineer” its performance with various hacks  
• These shacks can be “fun”, but don’t let them distract you

64



What Have We Done Today?

• Gone from first principles 
• Correctness condition for reliable transport 

• … to design for single packets 

• … to design for multiple packets 
• Very close to modern TCP 

• … to radically different designs 
• Which could replace TCP 

• All done by you, in 75 minutes
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