
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	21	
Host	Network	Stack

Midhul	Vuppalapa9	



Goals	for	today’s	lecture

• Deep	dive	into	Host	Network	Stack	
• Detailed	overview	of	its	functionality	
• Architecture	of	the	Linux	Network	Stack	
• Overheads	of	network	stack	processing	
• Common	optimizations	used	to	minimize	overheads



Recap:	Sockets	and	Ports

• When	a	process	wants	access	to	the	network,	it	opens	a	socket,	which	is	
associated	with	a	port	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	network	stack	

• Port:	number	that	identifies	that	particular	socket	

• used	by	the	OS	to	direct	incoming	packets	

• Sender/destination	addresses/names	established	before	creating	a	socket



• Application	opens	a	socket	that	allows	it	to	connect	to	the	network	stack	

• Maps	name	of	the	web	site	to	its	address	using	DNS	

• The	network	stack	at	the	source	embeds	the	address	and	port	for	both	
the	source	and	the	destination	in	packet	header	

• Each	router	constructs	a	routing	table	using	a	distributed	algorithm	

• Each	router	uses	destination	address	in	the	packet	header	to	look	up	the	
outgoing	link	in	the	routing	table	

• And	when	the	link	is	free,	forwards	the	packet		

• When	a	packet	arrives	the	destination:		

• The	network	stack	at	the	destination	uses	the	port	to	forward	the	
packet	to	the	right	application

Recap:	End-to-end	story



• Naming,	addressing:	Locating	the	destination	

• Routing:	Finding	a	path	to	the	destination	

• Forwarding:	Sending	data	to	the	destination	

• Reliability:	Handling	failures,	packet	drops,	etc.

Recap:	Four	fundamental	problems



• Naming,	addressing:	Locating	the	destination	

• Setting	up	connection	(name	resolution,	etc.)	—	low	overhead	

• Routing:	Finding	a	path	to	the	destination	
• Little	or	nothing	

• Forwarding:	Sending	data	to	the	destination	
• Create/insert	packet	headers	—	high	overhead	

• Move	data	around	based	on	sockets/ports	—	high	overhead	

• Enable	applications	to	read/write	data	—	very	high	overheads	

• Reliability:	Handling	failures,	packet	drops,	etc.	
• Protocol-level	processing	—	high	overhead

Four	fundamental	problems	—	Role	of	Network	Stack



Why	care	about	the	Host	Network	Stack?

• Network	stack	processing	consumes	CPU	resources	

• Every	CPU	cycle	consumed	by	Network	Stack		

• is	a	CPU	cycle	taken	away	from	Applications	

• Challenge:	Designing	an	efficient	Host	Network	Stack	
• Minimize	overheads	of	Network	Stack	processing	

• Recent	Technology	Trends	(more	details	in	later	lecture)	

• Network	link	bandwidths	are	growing	rapidly	(esp.	in	Datacenters)	
• CPU	speeds	are	not	growing	
• Host	network	stack	is	becoming	a	bottleneck	

• Even	more	important	to	design	efficient	Host	Network	Stack



Big	picture	of	a	Host

Network	Stack

App1 App2 ApplicaUons

OperaUng	System	
(OS)

Network	
Fabric

Sockets
(Each	is	assigned	port	number)

Sockets

HardwareNetwork	Interface	Card	(NIC)

Network	Link



Background:	Network	Interface	Card	(NIC)

• Input	/	Output	(I/O)	Device	that	connects	Host	to	the	network	

• Implements	Data	Link	&	Physical	Layer	functionality	

• Modern	NICs	expose	multiple	hardware	queues	

• Transmit	(Tx)	Queues:	for	transmitting	data	over	network	link	

• Receive	(Rx)	Queues:	for	receiving	data	from	network	link	

• How	do	NIC	and	Network	Stack	interact	with	each	other?	
• Data	Transfer:	Direct	Memory	Access	(DMA)	

• NIC	reads/write	data	from/to	memory	

• Signaling:	
• Network	stack	signals	NIC:	Doorbells	
• NIC	signals	Network	Stack:	Interrupts	(IRQs)	



Linux	Network	Stack

• One	of	the	most	widely	used	Network	Stacks	today	

• Has	evolved	over	multiple	decades	

• Many	different	components	

• Many	different	protocols	(our	focus:	TCP/IP)	

• Heads	up:	Some	of	the	terminology	may	seem	overwhelming	

• But	the	key	ideas	are	simple



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Initiates	data	copy	

• From	the	application	buffers	to	OS	buffers	

• High	CPU	overheads	

• Just	moving	data	around	(read	from	one	buffer,	write	to	another	buffer)	

• All	kinds	of	caching	and	page	replacement	issues	come	up	

• Packets	are	constructed	at	this	point	

• Push	data	to	socket’s	write	queue	until	the	queue	is	full	

• Block	until	queue	is	empty

Write	system	call



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• All	reliability-specific	operations	

• If	protocol	says	okay	to	send	data	

• Pop	packets	from	socket’s	write	queue	and	push	to	the	next	layer	

• Must	keep	packets,	in	case	the	packet	gets	lost	in	the	network	

• Delete	packets	once	ack-ed	by	the	receiver	

• A	lot	of	book	keeping	(could	be	complicated)

TCP/IP	processing



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Performs	“filtering”	of	packets	

• e.g.,	firewall	

• Network	address/port	translation	

• E.g.,	when	one	wants	to	hide	sender	port/addresses	from	other	servers	

• In	Linux,	iptable	and	nftable	commands	are	used	for	filtering	

• Lightweight

NetFilter



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• NIC	has	multiple	Transmit	(TX)	Queues	

• To	which	queue	should	one	forward	packets	from	a	particular	socket?	

• How	should	the	mapping	work?	

• All	sockets	forward	to	one	queue?	

• Each	socket	is	assigned	its	own	queue?	

• If	many-to-many	mapping,	how	to	map	sockets	to	queues?	

• Linux	XPS	layer	is	used	to	define/perform	this	mapping	

• Usually	maps	all	sockets	running	on	the	same	core	to	the	same	NIC	queue	

• But	can	define	any	mapping

XPS



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Performs	“traffic	shaping”	and	packet	scheduling	

• Shaping:	how	much	bandwidth	to	give	to	each	socket	

• Scheduling:	among	sockets	mapped	to	a	queue,	which	packet	to	choose	next?	

• Performed	on	a	per	NIC	queue	basis	

• Each	transmit	queue	has	its	own	queueing	discipline	(qdisc)	in	the	OS	

• In	Linux,	tc	command	is	used	for	managing	qdisc

Queueing	Discipline



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Traditionally,	data	processed	and	transmitted	at	1500byte	granularity	

• But,	if	the	application	has	a	lot	of	data	to	send	

• Many	of	the	previous	processing	steps	will	be	similar	for	all	packets	

• Individual	processing	unnecessarily	wastes	CPU	cycles		

• High	packet	processing	overheads	

• General	Segmentation	Offload	(GSO)	

• Software-based	solution	to	batch	packet	processing	

• But	packets	transmitted	at	1500byte	granularity	

• Thus,	once	processed	by	the	OS,	we	must	“segment”	packets	before	transmission	

• GSO	saves	cycles	for	packet	processing	using	batches	of	packets	(~64KB)	

• But	has	overheads	(implemented	in	software,	after	all):	perform	segmentation	

• TCP	Segmentation	offload	(TSO)	

• Always	perform	packet	processing	in	batches	in	the	OS	

• Offload	segmentation	of	packet	batches	to	the	hardware	

• Most	NICs	support	TSO

Segmentation



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Manage	“shared	memory”	between	the	NIC	and	OS	

• Shared	memory	region:	a	ring	(circular)	buffer	(per	NIC	TX	queue)	

• Each	element	in	the	buffer	referred	to	as	a	“packet	descriptor”	

• Memory	address	where	data	for	a	particular	packet	is	present	

• Operations:	

• Write	data	into	one	of	the	descriptors	

• Signal	to	the	NIC	that	data	is	ready	to	be	transmitted	(ring	doorbell)	

• NIC	fetches	packets	from	host	memory	pointed	to	by	the	packet	descriptor	

• Descriptors	re-inserted	into	the	ring	buffer	once	data	in	a	descriptor	is	transmitted	

Driver	Tx



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• NIC	maintains	multiple	Rx	ring	buffers	(one	per	NIC	RX	queue)	

• For	each	Rx	ring	buffer,	network	stack	does	the	following	operations:	

• Allocate	empty	OS	buffers	for	NIC	to	do	DMA	

• Prepare	new	descriptors	pointing	to	these	OS	buffers	

• Push	descriptors	to	the	ring	buffer	

• Replenish	the	ring	buffer	with	new	descriptors	so	NIC	can	continue	to	do	DMA	

Driver	Rx



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Packets	are	DMA-ed	to	OS	memory	buffers	(based	on	descriptors	in	Rx	ring	buffer)	

• NIC	triggers	interrupt	(IRQ)	to	wake	up	OS	for	handling	packets	

• Downside:	per-packet	interrupts	have	very	high	overheads	

• NAPI	(new	API):	disable	the	interrupt	and	start	the	poll	loop	for	handling	packets	

• Reduces	#	of	interrupts	=>	lower	overheads	

• Only	the	first	packet	triggers	an	interrupt	

IRQ	Handling	and	NAPI



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Receiver-side	optimization	similar	to	GSO/TSO	

• Aggregate	packets	of	the	same	connection	before	passing	it	upper	layers	

• Reduces	processing	overheads	of	upper	layers	

• Aggregation	is	software-based	

• Cost:	Extra	CPU	overheads	(similar	to	GSO)	

• LRO:	Offload	GRO	to	hardware	(NIC)	

• Can	get	the	benefits	of	GRO	without	extra	CPU	overheads	

• Downside:	NIC	has	limited	memory	to	store	packets	

Generic	Receive	Offload	(GRO)



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Which	CPU	core	should	NIC	forward	packets	to?	

• RPS/RSS:	Choose	CPU	core	based	on	hash	of	packet	header		

• RPS:	software-based,	RSS:	hardware-based	

• Enables	scalability	via	parallelized	packet	processing	

• Downside:	Cache	and	NUMA	issues	

• RFS/aRFS:	Choose	CPU	core	based	on	where	the	application	

is	running	

• RFS:	software-based,	aRFS:	hardware-based	

• Benefits:	Local	cache/memory	locality	

• Downside:	Poor	scalability	when	#	of	apps	running	on	

same	core	increases	

Packet	and	flow	steering



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

Network	Stack	Data	Path



• Push	packets	to	socket	read	queue	

• Generate	and	send	Acknowledgements	(ACKs)	

• Sender	can	clear	out	packets	that	have	been	delivered	

• Wake	up	application	thread	for	copying	data	to	application	buffers	

• Extra	CPU	scheduling	overhead/delay	

• Once	woken	up,	data	is	copied	from	OS	buffers	to	application	buffers	

TCP/IP	and	read	system	call



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	ApplicaUon	Thread.

End-to-end	Network	Stack	Data	Path



Questions?


