CS4450

Computer Networks:
Architecture and Protocols

Lecture 20
The IP protocol
DNS, Discovery protocols
Putting ALL the Pieces Together

Rachit Agarwal

Goal of today’s lecture

e THE Internet Protocol
e Functionality: delivering the data
e Three key ideas:
o Addressing (IP addressing)
« Routing (using a variety of protocols)
« Packet header as an interface (Encapsulating data into packets)
« Why do packet headers look like the way they look?

e A brief introduction to Domain Name System
e Discovery protocols
« End-to-end: how everything fits together

Network Layer

« THE functionality: delivering the data
« THE protocol: Internet Protocol (IP)

« Achieves its functionality (delivering the data), using three ideas:
« Addressing (IP addressing)
« Routing (using a variety of protocols)
« Packet header as an interface (Encapsulating data into packets)

Internet Protocol

« THE functionality: delivering the data

« THE protocol: Internet Protocol (IP)

e Unifying protocol

email WWW phone...

\SMTP HITE RTF’...}

TCP UDP...

ethernet PPN

CSMA async sonet...

/

copper fibre radio...

What is Desighing IP?

« Syntax: format of packet
e Nontrivial part: packet “header”
« Rest is opaque payload (why opaque?)

Header

« Semantics: meaning of header fields
e Required processing

Packet Header as Interface

« Think of packet header as interface
e Only way of passing information from packet to switch

e Designing interfaces:
« What task are you trying to perform?
« What information do you need to accomplish it?

e Header reflects information needed for basic tasks

What Tasks Do We Need to Do?

« Read packet correctly

e Get the packet to the destination

e Get responses to the packet back to source

e Carry data

« Tell host what to do with the packet once arrived

e Specify any special network handling of the packet
e Deal with problems that arise along the path

Reading Packet Correctly

« Where does the header end?
« Where the the packet end?

« What protocol are we using?
« Why is this so important?

Getting to the Destination

e Provide destination address

« Should this be location or identifier (name)?
« And what’s the difference?

e If a host moves should its address change?
e If not, how can you build scalable Internet?
e If so, then what good is an address for identification?

Getting Response Back to Source

e Source address

e Necessary for routers to respond to source
« When would they need to respond back?
e Failures!
e Do they really need to respond back?

« How would the source know if the packet has reached the
destination?

Carry Data

e Payload!

Questions?

List of Tasks

« Read packet correctly

e Get the packet to the destination

e Get responses to the packet back to source

e Carry data

« Tell host what to do with packet once arrived

e Specify any special network handling of the packet
e Deal with problems that arise along the path

Telling Destination How to Process Packet

 Indicate which protocols should handle packet
« What layers should this protocol be in?
« What are some options for this today?

« How does the source know what to enter here?

Special Handling

« Type of service, priority, etc.

« Options: discuss later

Dealing With Problems

e |s packet caught in loop?
e TTL

e Header corrupted:
e Detect with Checksum
« What about payload checksum?

e Packet too large?
e Deal with fragmentation
« Split packet apart
« Keep track of how to put together

Are We Missing Anything?

« Read packet correctly

e Get the packet to the destination

e Get responses to the packet back to source

e Carry data

« Tell host what to do with packet once arrived

e Specify any special network handling of the packet
e Deal with problems that arise along the path

From Semantics to Syntax

e The past few slides discussed the information the header must provide

o Will now show the syntax (layout) of IPv4 header, and discuss the
semantics in more detail

IP Packet Structure

4-bit Header | 8-Pit Type of .
4-bit Versionl | ength Service 16-bit Total Length (Bytes)

(TOS)

16-bit Identification S 13-bit Fragment Offset

8-bit Time to Live

(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

20 Bytes of Standard Header, then Options

4-bit Header | 8-Pit Type of .
4-bit Versionl | ength Service 16-bit Total Length (Bytes)

(TOS)

16-bit Identification S 13-bit Fragment Offset

8-bit Time to Live

(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Next Set of Slides

« Mapping between tasks and header fields
e Each of these fields is devoted to a task

e Let’s find out which ones and why...

Go Through Tasks One-by-One

« Read packet correctly

e Get the packet to the destination

e Get responses to the packet back to source

e Carry data

« Tell host what to do with packet once arrived

e Specify any special network handling of the packet
e Deal with problems that arise along the path

Read Packet Correctly

« Version number (4 bits)
 Indicates the version of the IP protocol
e Necessary to know what other fields to expect
« Typically “4” (for IPv4), and sometimes “6” (for IPv6)

o Header length (4 bits)
« Number of 32-bit words in the header
« Typically “5” (for a 20-byte IPv4 header)
« Can be more when IP options are used

 Total length (16 bits)
« Number of bytes in the packet
« Maximum size is 65,535 bytes (2216 -1)
e ... though underlying links may impose smaller limits

Fields for Reading Packet Correctly

8-bit Time to Live
(TTL)

Getting Packet to Destination and Back

« Two IP addresses
e Source IP address (32 bits)
o Destination IP address (32 bits)
« Destination Address
e Unique locator for the receiving host
« Allows each node to make forwarding decisions
« Source Address
e Unique locator for the sending host
« Recipient can decide whether to accept packet
e Enables recipient to send a reply back to the source

Fields for Reading Packet Correctly

4-bit Header | 8-Pit Type of .
4-bit Versionl | ength Service 16-bit Total Length (Bytes)

(TOS)

16-bit Identification S 13-bit Fragment Offset

8-bit Time to Live 8-bit Protocol 16-bit Header Checksum
(TTL)
32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Questions?

List of Tasks

« Read packet correctly

e Get the packet to the destination

e Get responses to the packet back to source

e Carry data

« Tell host what to do with packet once arrived

e Specify any special network handling of the packet
e Deal with problems that arise along the path

Telling Host How to Handle Packet

e Protocol (8 bits)
« |dentifies the higher level protocol
e Important for demultiplexing at receiving host
« Most common examples
e E.g., “6” for the Transmission Control Protocol (TCP)
e E.g., “17” for the User Datagram Protocol

Protocol = 6 Protocol = 17

IP Header IP Header
TCP Header TCP Header

Fields for Reading Packet Correctly

4-bit Header | 8-Pit Type of .
4-bit Versionl | ength Service 16-bit Total Length (Bytes)

(TOS)

13-bit Fragment Offset

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Special Handling

« Type-of-Service (8-bits)
o Allow packets to be treated differently based on needs
e E.g., low delay for audio, high bandwidth for bulk transfer
« Has been redefined several times, no general use

e Options
« Ability to specify other functionality
e Extensible format

Examples of Options

e Record Route
 Strict Source Route
e Loose Source Route
e Timestamp

e Traceroute

e Router Alert

Potential Problems

« Header Corrupted: Checksum
e Loop: TTL

e Packet too large: Fragmentation

Preventing Loops

e Forwarding loops cause packets to cycle forever
« As these accumulate, eventually consume all capacity

o Time-to-live (TTL) Field (8-bits)
« Decremented at each hop, packet discarded if reaches O
e ... and “time exceeded” message is sent to the source
e Using “ICMP” control message; basis for traceroute

TTL Field

4-bit Header | 8-Pit Type of .
4-bit Versionl | ength Service 16-bit Total Length (Bytes)

(TOS)

16-bit Identification S 13-bit Fragment Offset

8-bit 'I'(i_lr_nTeL’;o HE ' 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Header Corruption

e Checksum (16 bits)
 Particular form of checksum over packet header

e If not correct, router discards packets
e So it doesn’t act in bogus information

e Checksum recalculated at every router
« Why?
« Why include TTL?
« Why only header?

Checksum Field

4-bit Header | 8-Pit Type of .
4-bit Versionl | ength Service 16-bit Total Length (Bytes)

(TOS)

16-bit Identification S 13-bit Fragment Offset

8-bit Time to Live

(TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Packet Header as an interface

e Useless to learn the header format by heart
 If you remember the tasks that need to be performed ...
e Understanding why header format is what it is ...
 In general: if you understand the problem, solution is easy
« As the problem evolves, you will know where to look for a solution

e Transition from IPv4 to IPv6
e Gradually happening ...
e If you want to learn a bit, see backup slides

Domain Name System (DNS)

What is DNS?

o User has name of entity she/he wants to access

e E.2., wWw.chn.com

e Content, host, etc.

o However, Internet routes and forwards requests based on IP addresses
e Need to convert name (e.g., www.cnn.com) to an IP address

o Domain Name System (DNS)
o Provides the mapping from name to IP address
o User asks DNS: what is the IP address for www.cnn.com
e DNS responds: 157.166.255.18

http://www.cnn.com
http://www.cnn.com
http://www.cnn.com

Correctness Requirements

o Addresses can change underneath
e Move www.chn.com to 4.125.91.21

o Humans/Applications should be unaffected

e Name could map to multiple IP addresses
e wWww.cnn.com to multiple replicas to the Web site

e To enable “load balancing” or reduced latency
o Replicas may see different load (eg, due to geographic location)
e Some replicas may be closer to the user

o Multiple names for the same address
e E.g., www.cnn.com and cnn.com should map to same IP addresses

http://movewww.cnn.com
http://www.cnn.com
http://www.cnn.com
http://cnn.com

Goals and Approach

e Goals

e Correctness (from previous slide)

e Scaling (names, users, updates, etc.)

o Ease of management (unigueness of names, etc.)

e Availability and consistency

o Fast lookups

o Approach: Three intertwined hierarchies

lerarc
lerarc
lerarc

nica
Nica

nica

Namespace: exploit structure in names
Administration: hierarchy of authority over names
Infrastructure: hierarchy of DNS servers

Hierarchical Namespace

root

com gov mil org net uk fr

e “Top Level Domains” (TLDs) are at the top
e Domains are subtrees
e E.g. .edu, cornell.edu, cs.cornell.edu

e Name is leaf-to-root path
e systems.cs.cornell.edu

http://cornell.edu
http://cs.cornell.edu
http://systems.cs.cornell.edu

Hierarchical Administration

ICANN/IANA root

m\
edu com gov mil org net uk fr e
mit

cornell

/
Cs

e A zone corresponds to an administrative

authority responsible for contiguous portion
of hierarchy

ece

systems

e Cornell controls *.cornell.edu

e CS controls *.cs.cornell.edu

e Name collisions trivially avoided

e Each domain can ensure this locally

http://cornell.edu
http://cs.cornell.edu

Hierarchical Infrastructure

e Top of hierarchy: root

e Location hardwired into other servers

o Next level: Top Level Domain (TLD) servers
e .COM, .edu, etc.

e Bottom level: Authoritative DNS servers
e Actually do the mapping

e Can be maintained locally or by a service provider

Who Knows What?

e Every server knows address of root name server
e Root servers know the address of all TLD servers
e Every node knows the address of all children

o An authoritative DNS server stores name-to-address mappings
(“resource records”) for all DNS names in the domain that it has

authority for

e Therefore, each server:
o Stores only a subset of the total DNS database (scalable!)

e Can discover server(s) for any portion of the hierarchy

Using DNS

e TWO components
e Local DNS servers
e Resolver software on hosts

e Local DNS server (“default name server”)
o Usually near the end hosts that use it

e Local hosts configured with local server (e.g, /etc/resolv.conf) or
learn server via DHCP (to be discussed soon)

e Client application
e Obtain DNS name (e.g., from the URL)
o Do gethostbyname() to trigger resolver code
e Which then sends request to local DNS server

root servers

Local DNS
server \

(mydns.cornell.edu) adu servers

® \
nyu.edu

servers
%NS client

(me.cs.cornell.edu)

root servers

Local DNS
server \

(mydns.cornell.edu) adu servers

@ \
éé

2 nvu.edu
Z, Yy

® servers
%, % .
: NS client

(me.cs.cornell.edu)

root
DNS server

Local DNS ‘
server \

.cornel
(mydns.corne .edu servers

\

2
LL‘L

2 nvu.edu
Z, Yy

® servers
%, % .
: NS client

(me.cs.cornell.edu)

50

root
DNS server

Local DNS ‘
server

(mydns.cornel

.edu ser\ﬁ

2
LL‘L

2 nvu.edu
Z, Yy

® servers
%, % .
: NS client

(me.cs.cornell.edu)

51

recursive DNS query root
DNS server

Local DNS ‘
server

(mydns.cornel

.edu servers

\

nyu.edu g'vers

2
%L

5
2

Q
0.4
“ %NS client

(me.cs.cornell.edu)

52

root

DNS server
Local DNS ‘
server
(mydns.cornell.edu) ‘
‘ .edu servers

% . nyu.edu servers
NS client

(me.cs.cornell.edu)

53

iterative DNS query root

DNS server
Local DNS ‘
Where is .edu?
server
(mydns.cornel Where is nyu.edu? ‘
M servers

Where is www.nyu.edu? ‘
_ nyu.edu servers
NS client

(me.cs.cornell.edu)

Discovery Protocols

Suppose Host A wants to communication with Host B

Discovery

e Suppose | am host A

« | want to communicate with B (say, www.google.com)

| was “born” knowing only my name — my MAC address :-)

e Must discover some information before | can communicate with B
« What is my IP address?
« What is B’s IP address?
e Using DNS

e Is B within my LAN?

o If yes, what is B’'s MAC address?

e If not, what is the address of my first-hop router to B?

http://www.google.com

DHCP and ARP

 Link layer discovery protocols
« DHCP — Dynamic Host Configuration Protocol
« ARP — Address Resolution Protocol
e Configured to a single LAN
e Rely on broadcast capability

Hosts

Router

DHCP and ARP

 Link layer discovery protocols
e Serve two functions
1. Discovery of local end-hosts
e« For communication between hosts on the same LAN

2. Bootstrap communication with remote hosts
« What’s my IP address?
« Who/where is my local DNS server?

« Who/where is my first hop router?

DHCP

e Dynamic Host Configuration Protocol
e Defined in RFC 2131

e A host uses DHCP to discover
e Its own IP address
e Subnet masks — allows to test whether an IP address is local or not
« I[P address(es) for its local DNS name server(s)
o |P address(es) for its first-hop “default” router(s)

DHCP: operation

1. One or more local DHCP servers maintain required information
 IP address pool, netmask, DNS servers, etc.
e Application that listens on UDP port 67

DHCP: operation

1. One or more local DHCP servers maintain required information

2. Client broadcasts a DHCP discovery message
e L2 broadcast, to MAC address FF:FF:FF:FF:FF:FF

DHCP: operation

1. One or more local DHCP servers maintain required information
2. Client broadcasts a DHCP discovery message

3. One or more DHCP servers respond with a DHCP “offer” message
e Proposed IP address for client, lease time
e Other parameters

DHCP: operation

1. One or more local DHCP servers maintain required information

2. Client broadcasts a DHCP discovery message

3. One or more DHCP servers respond with a DHCP “offer” message

4. Client broadcasts a DHCP request message
o Specifies which offer it wants
« Echoes accepted parameters
e Other DHCP servers learn they were not chosen

DHCP: operation

1. One or more local DHCP servers maintain required information
2. Client broadcasts a DHCP discovery message

3. One or more DHCP servers respond with a DHCP “offer” message
4. Client broadcasts a DHCP request message

5. Selected DHCP server responds with an ACK

Are we there yet?

What | learnt from DHCP
My IP: 1.2.3.48
Netmask: 1.2.3.0/24
Local DNS: 1.2.3.156
Router: 1.2.3.9

DHCP Server DNS Server

T[] ess [

>

Router (i

ARP: Address Resolution Protocol

e Every host maintains an ARP table
e List of (IP address — MAC address) pairs
e For |IP addresses within the same LAN

e Consult the table when sending a packet
e Map destination IP address to destination MAC address

e But: what if IP address not in the table?
e Either its not local (detected using DHCP)
e |f its local:
e Sender broadcasts: “Who has IP address 1.2.3.1567”
e Caches the answer in ARP table

Key Ideas in Both ARP and DHCP

e Broadcasting: can use broadcast to make contact
e Scalable because of limited size

e Caching: remember the past for a while
e Store the information you learn to reduce overhead

Taking Stock: Discovery

Examples

Structure

Configuration

Resolution
Service

http://www.cs.cornell.edu

Putting all the pieces together

What is a computer network?

A set of network elements connected together, that implement a set of
protocols for the purpose of sharing resources at the end hosts

What does Internet actually look like?

« The smallest component:
o A Network Interface Card (NIC), or a machine, or a server
« Has a Link Layer MAC name/address

« Multiple NICs connected in a Local Area Network (LAN) via
e Broadcast Ethernet,
e Or, Switched Ethernet

 Switches in LAN
. Connected to larger routers pa

Amac Bviac Cmac

ity i

s
\\‘#};

[(
18y,
~

DMAC

What does Internet

actually loo

e

What does Internet actually look like?

i)

Dyac=
Auac Byiac
g 2
S
@l
L. >
Duac=> pd
Eniac

What does Internet actually look like?

Multiple “Autonomous Systems (AS)” or “Domains”
connect together using Border Routers

|

\

What is the other part of the Internet?
Protocols!

What protocols have we learnt on LAN?

o Addresses
o Link Layer MAC names/addresses: come with the hardware

« CSMA/CD Protocol:
e For transmitting frames on broadcast Ethernet

« Spanning Tree Protocol:
e For transmitting frames on switched Ethernet

Anac Buviac Cmac

What have we learnt beyond LAN?

 Link-state and Distance-vector Protocols:
« For finding routes (and a next-hop) to an IP address within an ISP

« Border Gateway Protocol:
e For finding routes to an IP address range

e Forwarding at routers
« Store routing tables (map destination prefixes to outgoing port)
e Longest prefix match for destination address lookup

How does the Internet work?

Are you ready?

(Count the number of protocols used for each packet)

How does Internet work — end-to-end?

« Network stack receives the packet from the application (roughly speaking)
« What is my IP address? (using DHCP)

« What is the destination IP address? (using DNS)

e |s destination IP address within my LAN? (using DHCP)

o If destination IP address local:
« What is destination MAC address (using ARP)?
« Convert packet into frames with correct source/destination address
e Convert frames into bits
e Forward the bits to the wire ...

« Each switch:
e Forwards to destination (using STP/CSMA/CD)

End-to-End |

DHCP

Source IP Destination within my LAN?

Destination IP

g ons

r|Z|-

P

ARP

~ il

Destination MAC

r|lZ|—

r|Z|-

How does Internet work — end-to-end?

« Network stack receives the packet from the application (roughly speaking)
« What is my IP address? (using DHCP)

« What is the destination IP address? (using DNS)

e |s destination IP address within my LAN? (using DHCP)

o If destination IP address remote:
« What is my next-hop router IP address? (using DHCP)
« What is my next-hop router MAC address? (using ARP)
« Convert packet into frames with correct source/destination address
« Convert frames into bits
e Forward the bits to the wire ...

e Each router

End-to-End Ii

First Hop Router IP DHCP

Destination within my LAN?

Destination IP

g ons

r|Z|-

ARP

Destination MAC

irst Hop Router MAC

How does Internet work — end-to-end?
A router upon receiving a packet (implicit questions)

e Is the destination in a LAN connected to me?
e Forward the packet to the destination
« Using STP/CSMA/CD

e Is the destination not in my LAN but in my ISP?

e Forward the packet to the next-hop router towards the destination
e Using routing table entries via distance-vector routing algorithm

e Is the destination in a different ISP?

e Forward the packet to the next-hop router towards the destination
e Using routing table entries via BGP routing algorithm

Are We There Yet?

o Yes!
e How can we be sure?

e | ets go back to where we started

Recall the end-to-end story from our fifth lecture :-)

« Application opens a socket that allows it to connect to the network stack
« Maps name of the web site to its address using DNS

« The network stack at the source embeds the address and port for both
the source and the destination in packet header

e Each router constructs a routing table using a distributed algorithm

e Each router uses destination address in the packet header to look up the
outgoing link in the routing table
« And when the link is free, forwards the packet

« When a packet arrives the destination:

« The network stack at the destination uses the port to forward the
packet to the right application

You now know how the Internet works!!!!

All that is remaining:

Reliability.

