
Computer Networks:
Architecture and Protocols

CS4450

Lecture 19
BGP limita1ons

Switch Architecture

Rachit Agarwal

Announcements

• Exam 2 grades released
• Please submit regrade requests only if your answer matches the rubric

• We will release our first programming assignment this week
• Recall: not graded, but we will provide all the help

2

Goals for Today’s Lecture

• Wrap up BGP

• Understand switch/router architecture

3

● ASes provide “transit” between their customers
● Peers do not provide transit between other peers

traffic allowed traffic not allowed

A B C

D E F

Q
Pr Cu

Peer Peer

Recap: Inter-domain Routing Follows the Money

BGP is Inspired by Distance Vector
● Per-destination route advertisements

● No global sharing of network topology

● Iterative and distributed convergence on paths

● But, four key differences

● BGP does not pick shortest paths

● Each node announces one or multiple PATHs per destination

● Selective Route advertisement: not all paths are announced

● BGP may aggregate paths
▪ may announce one path for multiple destinations

BGP Issues

BGP: Issues

● Reachability

● Security

● Convergence

● Performance

● Anomalies

Reachability
● In normal routing, if graph is connected then reachability is assured

● With policy routing, this doesn’t always hold

AS 2

AS 3AS 1Provider Provider

Customer

Security
● An AS can claim to serve a prefix that they actually don’t have a

route to (blackholing traffic)
● Problem not specific to policy or path vector
● Important because of AS autonomy
● Fixable: make ASes prove they have a path

● But…
● AS may forward packets along a route different from what is

advertised
● Tell customers about a fictitious short path…
● Much harder to fix!

Convergence
● If all AS policies follow Gao-Rexford rules,

● Then BGP is guaranteed to converge (safety)

● For arbitrary policies, BGP may fail to converge!

BGP Example (All good)GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 235

Fig. 1. Stable paths problems with shortest path solutions.

, then . Therefore, any stable path
assignment implicitly defines a tree rooted at the origin. Note,
however, that this is not always a spanning tree.
The stable paths problem is solvable if there

is a stable path assignment for . A stable path assignment is
also called a solution for . If no such assignment exists, then
is unsolvable.
Fig. 1(a) presents a stable paths problem called SHORTEST 1.

The ranking function for each nonzero node is depicted as a
vertical list next to the node, with the highest ranked path at
the top going down to the lowest ranked nonempty path at the
bottom. The stable path assignment

is illustrated in Fig. 1(b). If we reverse the ranking order of paths
at node we arrive at SHORTEST 2, depicted in Fig. 1(c). The
stable path assignment

is illustrated in Fig. 1(d). In both cases, the ranking functions
prefer shorter paths to longer paths and the solutions are shortest
path trees. Note that the ranking at node 4 breaks ties between
paths of equal length. This results in one shortest path tree as
the solution for SHORTEST 1, while another shortest path tree as
the solution for SHORTEST 2.
The ranking of paths is not required to prefer shorter paths

to longer paths. For example, Fig. 2(a) presents a stable paths
problem called GOOD GADGET. Note that both nodes 1 and 2
prefer longer paths to shorter paths. The stable path assignment

illustrated in Fig. 2(b) is not a shortest path tree. This is the
unique solution to this problem.
A modification of GOOD GADGET, called NAUGHTY GADGET,

is shown in Fig. 2(c). NAUGHTY GADGET adds one permitted path

Fig. 2. Stable paths problems that are not shortest path problems.

Fig. 3. DISAGREE and its two solutions.

(3 4 2 0) for node 3, yet it has the same unique solution as GOOD
GADGET. However, as is explained in Section IV, the protocol
SPVP can diverge for this problem. Finally, by reordering the
ranking of paths at node 4, we produce a specification called
BAD GADGET, presented in Fig. 2(d). This specification has no
solution and the SPVP protocol will always diverge.
So far, our examples each has had at most one solution. This

is not always the case. The simplest instance, called DISAGREE,
having more than one solution is illustrated in Fig. 3(a). The
stable path assignment

is depicted in Fig. 3(b). An alternative solution

is shown in Fig. 3(c). No other path assignments are stable for
this problem.

1 2 3 4

R1 10 20 30 -

R2 10 20 30 430

R3 130 20 30 430

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

“1” prefers “1 3 0”
over “1 0” to reach “0”

Example of Policy Oscillation

Initially: nodes 1, 2, 3 know only shortest path to 0

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1 advertises its path 1 0 to 2

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0ad
ve

rti
se

: 1
 0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

advertise: 3 0

3 advertises its path 3 0 to 1

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0with
dr

aw
: 1

 0

1 withdraws its path 1 0 from 2

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

advertise: 2 0

2 advertises its path 2 0 to 3

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

withdraw: 3 0

3 withdraws its path 3 0 from 1

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

1 advertises its path 1 0 to 2
ad

ve
rti

se
: 1

 0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

withdraw: 2 0

2 withdraws its path 2 0 from 3

Step-by-step Policy Oscillation

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

We are back to where we started!

Step-by-step Policy Oscillation

BGP Example (Persistent Loops)

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 235

Fig. 1. Stable paths problems with shortest path solutions.

, then . Therefore, any stable path
assignment implicitly defines a tree rooted at the origin. Note,
however, that this is not always a spanning tree.
The stable paths problem is solvable if there

is a stable path assignment for . A stable path assignment is
also called a solution for . If no such assignment exists, then
is unsolvable.
Fig. 1(a) presents a stable paths problem called SHORTEST 1.

The ranking function for each nonzero node is depicted as a
vertical list next to the node, with the highest ranked path at
the top going down to the lowest ranked nonempty path at the
bottom. The stable path assignment

is illustrated in Fig. 1(b). If we reverse the ranking order of paths
at node we arrive at SHORTEST 2, depicted in Fig. 1(c). The
stable path assignment

is illustrated in Fig. 1(d). In both cases, the ranking functions
prefer shorter paths to longer paths and the solutions are shortest
path trees. Note that the ranking at node 4 breaks ties between
paths of equal length. This results in one shortest path tree as
the solution for SHORTEST 1, while another shortest path tree as
the solution for SHORTEST 2.
The ranking of paths is not required to prefer shorter paths

to longer paths. For example, Fig. 2(a) presents a stable paths
problem called GOOD GADGET. Note that both nodes 1 and 2
prefer longer paths to shorter paths. The stable path assignment

illustrated in Fig. 2(b) is not a shortest path tree. This is the
unique solution to this problem.
A modification of GOOD GADGET, called NAUGHTY GADGET,

is shown in Fig. 2(c). NAUGHTY GADGET adds one permitted path

Fig. 2. Stable paths problems that are not shortest path problems.

Fig. 3. DISAGREE and its two solutions.

(3 4 2 0) for node 3, yet it has the same unique solution as GOOD
GADGET. However, as is explained in Section IV, the protocol
SPVP can diverge for this problem. Finally, by reordering the
ranking of paths at node 4, we produce a specification called
BAD GADGET, presented in Fig. 2(d). This specification has no
solution and the SPVP protocol will always diverge.
So far, our examples each has had at most one solution. This

is not always the case. The simplest instance, called DISAGREE,
having more than one solution is illustrated in Fig. 3(a). The
stable path assignment

is depicted in Fig. 3(b). An alternative solution

is shown in Fig. 3(c). No other path assignments are stable for
this problem.

1 2 3 4
R1 10 20 30 -
R2 10 20 30 420

R3 10 20 3420 420
R4 10 210 3420 420
R5 10 210 3420 -

R6 10 210 30 -
R7 130 210 30 -
R8 130 20 30 -
R9 130 20 30 420

R10 130 20 3420 420
R11 10 20 3420 420

BGP Example (Bad bad bad)

GRIFFIN et al.: STABLE PATHS PROBLEM AND INTERDOMAIN ROUTING 235

Fig. 1. Stable paths problems with shortest path solutions.

, then . Therefore, any stable path
assignment implicitly defines a tree rooted at the origin. Note,
however, that this is not always a spanning tree.
The stable paths problem is solvable if there

is a stable path assignment for . A stable path assignment is
also called a solution for . If no such assignment exists, then
is unsolvable.
Fig. 1(a) presents a stable paths problem called SHORTEST 1.

The ranking function for each nonzero node is depicted as a
vertical list next to the node, with the highest ranked path at
the top going down to the lowest ranked nonempty path at the
bottom. The stable path assignment

is illustrated in Fig. 1(b). If we reverse the ranking order of paths
at node we arrive at SHORTEST 2, depicted in Fig. 1(c). The
stable path assignment

is illustrated in Fig. 1(d). In both cases, the ranking functions
prefer shorter paths to longer paths and the solutions are shortest
path trees. Note that the ranking at node 4 breaks ties between
paths of equal length. This results in one shortest path tree as
the solution for SHORTEST 1, while another shortest path tree as
the solution for SHORTEST 2.
The ranking of paths is not required to prefer shorter paths

to longer paths. For example, Fig. 2(a) presents a stable paths
problem called GOOD GADGET. Note that both nodes 1 and 2
prefer longer paths to shorter paths. The stable path assignment

illustrated in Fig. 2(b) is not a shortest path tree. This is the
unique solution to this problem.
A modification of GOOD GADGET, called NAUGHTY GADGET,

is shown in Fig. 2(c). NAUGHTY GADGET adds one permitted path

Fig. 2. Stable paths problems that are not shortest path problems.

Fig. 3. DISAGREE and its two solutions.

(3 4 2 0) for node 3, yet it has the same unique solution as GOOD
GADGET. However, as is explained in Section IV, the protocol
SPVP can diverge for this problem. Finally, by reordering the
ranking of paths at node 4, we produce a specification called
BAD GADGET, presented in Fig. 2(d). This specification has no
solution and the SPVP protocol will always diverge.
So far, our examples each has had at most one solution. This

is not always the case. The simplest instance, called DISAGREE,
having more than one solution is illustrated in Fig. 3(a). The
stable path assignment

is depicted in Fig. 3(b). An alternative solution

is shown in Fig. 3(c). No other path assignments are stable for
this problem.

1 2 3 4
R1 10 20 30 -
R2 10 20 30 430
R3 130 20 30 430

1 2 3 4
R1 10 20 30 -
R2 10 20 30 420
R3 10 20 3420 420
R4 10 210 3420 420
R5 10 210 3420 -
R6 10 210 30 -
R7 130 210 30 -
R8 130 20 30 -
R9 130 20 30 420

R10 130 20 3420 420
R11 10 20 3420 420

Convergence
● If all AS policies follow Gao-Rexford rules,

● Then BGP is guaranteed to converge (safety)

● For arbitrary policies, BGP may fail to converge!

● Why should this trouble us?

Performance Non-Issues
● Internal Routing

● Domains typically use “hot potato” routing
● Not always optimal, but economically expedient

● Policy not about performance
● So policy-chosen paths aren’t shortest

● AS path length can be misleading
● 20% of paths inflated by at least 5 router hops

● AS path length can be misleading
● An AS may have many router-level hops

AS 4

AS 3

AS 2

AS 1

 BGP says that
 path 4 1 is better
 than path 3 2 1

Performance (example)

Performance: Real Issue

● BGP outages are biggest source of Internet problems

● Labovitz et al. SIGCOMM’97
● 10% of routes available less than 95% of the time
● Less than 35% of routes available 99.99% of the time

● Labovitz et al. SIGCOMM 2000
● 40% of path outages take 30+ minutes to repair

● But most popular paths are very stable

Slow Convergence

34

Where are we?

Built on top of
reliable delivery

Built on top of best-
effort forwarding

Built on top of
best-effort routing

Built on top of
physical bit transfer

Switch/Router Architecture

IP Routers and Switches (used interchangeably today)

• Core building block of Internet infrastructure

• $120B+ industry

• Vendors: Cisco, Huawei, Juniper, Alcatel-Lucent (account for >90%)

Recap: Routers Forward Packets

Cornell

Harvard

MIT

Switch #1

Switch #2

Switch #3

Router Definitions

R bits/s

• N = No. Of external router ports

• R = bandwidth (“line rate”) of a port

• Router capacity = NxR

1
2

3

4
5

…

N-1

N

AT&T BBN

MIT

Cornell

core

core

edge/border (ISP)

edge/border (enterprise)

home,
 small business

Networks and Routers

Examples of Routers (core)

• Core: Cisco CRS
• R = 10/40/100 Gbps
• NR = 922 Tbps
• Netflix: 0.7 GB/hr (1.5Mb/s)
• ~600 million concurrent Netflix users

• Edge (ISP): Cisco ASR
• R = 1/10/40 Gbps
• NR = 120 Gbps

• Edge (enterprise): Cisco 3945E
• R = 10/100/1000 Mbps
• NR < 10 Gbps

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control
Processor

Linecards (output)

Processes packets
 on their way in

Processes packets
 before they leave

Transfers packets
from input to
output ports

Input and Output for
 the same port are on one

physical linecard

What’s Inside a Router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control
Processor

Linecards (output)

(1) Implement IGP
 and BGP protocols;

compute routing tables
(2) Push forwarding

tables to the line cards

What’s Inside a Router?

1

2

N

1

2

N

Linecards (input)

Interconnect
Fabric

Route/Control
Processor

Linecards (output)

Constitutes the
data plane

Constitutes the
control plane

What’s Inside a Router?

● Receive incoming packets (physical layer stuff)

● Update the IP header
● TTL, Checksum (maybe some other fields)

● Lookup the output port for the destination IP address

● Queue the packet at the switch fabric

Input Line Cards: Tasks

● 100B packets @ 40Gbps => packet every 20 nano secs!

● Typically implemented with specialized hardware
● ASICs, specialized “network processors”

45

Challenge: Speed!

● Upon receiving a packet
● Inspect the destination IP address in the header
● Index into the routing/forwarding table
● If no match, select the default route
● Forward packet out appropriate interface

● Default route
● Configured to cover cases where no matches
● Allows small tables at edge (w/o routing algorithms)

● if it isn’t on my subnet, send it to my ISP

46

Looking up the Output Port

● Recall: For scalability, addresses are aggregated

● Longest Prefix match
● Find the entry with matching “longest prefix” with destination address

Scaling the Lookup

……

 3
 1128.16.120.xxx

1

2128.16.120.111

128.82.100.101

 2
128.82.xxx.xxx

128.82.100.xxx

● Incoming packet destination: 201.143.7.0

48

Prefix Port
201.143.0.0/22 Port 1
201.143.4.0.0/24 Port 2
201.143.5.0.0/24 Port 3
201.143.6.0/23 Port 4

Finding a Match

49

11001001 10001111 00000111 11010010

Finding a Match: Covert to Binary

● Incoming packet destination: 201.143.7.0

11001001 10001111 000000 - - - - - - - - - -

11001001 10001111 00000100 - - - - - - - -

11001001 10001111 00000101 - - - - - - - -

11001001 10001111 0000011- - - - - - - - -

Rou1ng Table
201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

50

11001001 10001111 00000111 11010010

Finding a Match: Covert to Binary

● Incoming packet destination: 201.143.7.0

11001001 10001111 000000 - - - - - - - - - -

11001001 10001111 00000100 - - - - - - - -

11001001 10001111 00000101 - - - - - - - -

11001001 10001111 0000011- - - - - - - - -

Rou1ng Table
201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

51

11001001 10001111 00000111 11010010

Finding a Match: Covert to Binary

● Incoming packet destination: 201.143.7.0

11001001 10001111 000000 - - - - - - - - - -

11001001 10001111 00000100 - - - - - - - -

11001001 10001111 00000101 - - - - - - - -

11001001 10001111 0000011- - - - - - - - -

Rou1ng Table
201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

52

11001001 10001111 00000111 11010010

Longest Prefix Match

● Incoming packet destination: 201.143.7.0

11001001 10001111 000000 - - - - - - - - - -

11001001 10001111 00000100 - - - - - - - -

11001001 10001111 00000101 - - - - - - - -

11001001 10001111 0000011- - - - - - - - -

Rou1ng Table
201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

Check an address against all des1na1on prefixes and select the prefix
it matches with on the most bits

● Testing each entry to find a match scales poorly
● Roughly (number of entries) × (number of bits)

● Must leverage tree structure of binary strings
● Set up tree-like data structure
● Called a TRIE

● We will briefly discuss it; more details in text
● In case you are interested ….

53

Finding the Match Efficiently

● Just focusing on the bits where all the action is….

● 0** ➔ Port 1
● 100 ➔ Port 2
● 101 ➔ Port 3
● 11* ➔ Port 4

54

Consider Four 3-Bit Prefixes

55

00*

000 001

0 1 01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

Tree Structure

56

00*

000 001

0 1 01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

 0** ➔ Port 1
 100 ➔ Port 2
 101 ➔ Port 3
 11* ➔ Port 4

Walk Tree: Stop at Prefix Entries

57

00*

000 001

0 1 01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

P1

P2 P3

P4

 0** ➔ Port 1
 100 ➔ Port 2
 101 ➔ Port 3
 11* ➔ Port 4

Walk Tree: Stop at Prefix Entries

walking trees takes O(#bits)

Longest Prefix Match in Real Routers

• Real routers use far more advanced/complex solutions
• But what we discussed is the starting point

• With many heuristics and optimizations that leverage real-world patterns
• Some destinations more popular than others
• Some ports lead to more destinations
• Typical fix granularities

Recap: Input Linecards

• Main challenge is processing speed
• But what we discussed is the starting point

• Tasks involved
• Update packet header (easy)
• Longest prefix match lookup on destinations address (harder)

• Mostly implemented with specialized hardware

Output Linecard

• Packet Classification: map each packet to a “flow”
• Flow (for now): set of packets between two particular endpoints

• Buffer Management: decide when and which packet to drop

• Scheduler: decide when and which packet to transmit

Output Linecard

• Packet Classification: map each packet to a “flow”
• Flow (for now): set of packets between two particular endpoints

• Buffer Management: decide when and which packet to drop

• Scheduler: decide when and which packet to transmit

• Used to implement various forms of policy
• Deny all e-mail traffic from ISP X to Y (access control)
• Route IP telephony traffic from X to Y via PHY_CIRCUIT (policy)
• Ensure that no more than 50 Mbps are injected from ISP-X (QoS)

Simplest FIFO Router

• No classification

• Drop tail buffer management: when buffer is full drop incoming packet

• First In First Out (FIFO) Scheduling: schedule packets in order of arrival

Packet Classification

• Classify an IP packet based on the number of fields in the packet header
• Source/destination IP address (32 bits)
• Source/destination TCP port number (16 bits)
• Type of Service (TOS) byte (8 bits)
• Type of Protocol (8 bits)

• In general fields are specified by range
• Classification requires a multi-dimensional range search

Scheduler

• One queue per flow

• Scheduler decides from which queue to send a packet

• Goals of scheduling algorithm
• Fast!
• Depends on the policy being implemented (fairness, priority, etc.)

Example: Priority Scheduler

• Packets in the highest priority queue are always served before the
packets in the lower priority queues

Example: Round Robin Scheduler

• Packets are served from each queue in turn

Connecting Input to Output: Switch Fabric

• Priority Scheduler: packets are served from each queue in turn

Today’s Switch Fabrics: Mini Network!

What’s Hard About the Switch Fabric?

Queueing!

Third Generation Router: Switched Interconnects

Third Generation Router: Switched Interconnects

Reality is More Complicated

• Commercial high-speed routers use
• Combination of input and output queueing
• Complex multi-stage “topologies”
• Distributed multi-stage schedulers (for scalability)

IP Routers Recap

• Core building block of Internet infrastructure

• Scalable Routing -> Longest Prefix Matching

• Need fast implementations for
• Longest prefix matching
• Switch fabric scheduling

What do we know so far [1] …

• Network performance metrics
• Transmission delay, propagation delay, queueing delay, bandwidth

• Sharing networks
• Circuit switching, packet switching, and associated tradeoffs
• Why is Internet packet switched?

• Architectural principles and design goals
• Layering principle, End-to-end principle, Fate sharing principle
• Many important design goals from David Clark’s paper

• And many important missing goals

• Addressing
• Link layer MAC names, and scalability challenges at the Internet
• Network layer IP addresses: three requirements, aggregation, CIDR

74

What do we know so far [2] …
• Link Layer

• Sharing a Broadcast medium, associated challenges, CSMA/CD
• Link layer addressing: MAC names
• Why Frames? Why Switched Ethernet?
• The Spanning Tree Protocol (STP)

• Network Layer
• Why Network Layer? Why not just use STP across the Internet?
• Routing Tables: A collection of spanning trees, one per destination
• Generating Valid Routing tables (within a domain):

• Global view (Link-State Protocol), and limitations
• Local view (Distance-vector Protocol)

• Generating Valid Routing tables (across domains):
• Border Gateway Protocol, Internet structure, routing policies

75

Network Layer

• THE functionality: delivering the data

• THE protocol: Internet Protocol (IP)

• Achieves its functionality (delivering the data), using three ideas:
• Addressing (IP addressing)
• Routing (using a variety of protocols)
• Packet header as an interface (Encapsulating data into packets)

