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Goals for Today’s Lecture

• Continue learning about Routing Protocols 
• Link State (Global view, Local computation)—done 

• Distance Vector (Local view, Local computation)—more today 

• Maintain sanity: its one of the “harder” lectures 

• I’ll try to make it -less- hard, but … 

• Pay attention 

• Review again tomorrow 

• Work out a few examples
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Recap from last few lectures



• Used in switched Ethernet to avoid broadcast storm 

• Can be used for routing on the Internet (via “flooding” on spanning tree) 

• Three fundamental issues: 

• Unnecessary processing at end hosts (that are not the destination) 

• Higher latency 

• Lower available bandwidth

Recap: Spanning Tree Protocol …



• Routing table:  
• Each switch: the next hop for each destination in the network 

• Routing state: collection of routing tables across all nodes 

• Two questions: 

• How can we verify given routing state is valid? 

• How can we produce valid routing state? 

• Global routing state valid if and only if: 
• There are no dead ends (other than destination) 

• There are no “persistent” loops

Recap: Routing Tables



• Routing tables are nothing but …. 

• A collection of (directed) spanning tree 

• One for each destination 

• Routing Protocols 
• Mechanisms to producing valid routing tables 

• What we will see: 

• “n” spanning tree protocols running in parallel

Recap: The right way to think about Routing Tables



• Create Tree, route on tree 

• E.g., Spanning tree protocol (switched Ethernet) 

• Good: easy, no (persistent) loops, no dead ends 

• Not-so-good: unnecessary processing, high latency, low bandwidth 

• Obtain a global view: 
• E.g., Link state (last lecture) 

• Distributed route computation: 
• E.g., Distance vector 

• E.g., Border Gateway Protocol

Recap: Three flavors of protocols for producing valid routing state



Recap: Where to create global view?

• One option: Central server 

• Collects a global view 

• Computes the routing table for each node 

• “Installs” routing tables at each node 

• Software-defined Networks: later in course 

• Second option: At each router 

• Each router collects a global view 

• Computes its own routing table using Link-state protocol 

• Link-state routing protocol 
• OSPF is a specific implementation of link-state protocol 

• IETF RFC 2328 (IPv4) or 5340 (IPv6)



Recap: Are Loops Still Possible?
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A and D think this is the path to C

E-C link fails, but D doesn’t know yet

E thinks that this the path to C

E reaches C via D, D reaches C via E 
Loop!



Recap: Transient Disruptions
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• Inconsistent link-state views 

• Some routers know about failure before others 

• The shortest paths are no longer consistent 

• Can cause transient forwarding loops 
• Transient loops are still a problem!



Questions?



Distributed Route Computation



Recap: Distance-vector protocol with next-hops (no failures)
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• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y 

• Initially each switch X announces (X,0,X) to its neighbors 

• Each switch X updates its view upon receiving each message 

• Upon receiving message (Y,d,Z) from Z, check Y’s id 

• If Y’s id < current root: set root destination = Y 

• Switch X computes its shortest distance from the root destination 

• If current_distance_to_Y > d + cost of link to Z:  

• update current_distance_to_Y = d + cost of link to Z 

• update next_hop_to_destination = Z 

• If root changed OR shortest distance to the root destination changed, 

send all neighbors updated message (Y, current_distance_to_Y, X)



Lets run the Protocol on this example 

(with next-hops)
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Round 1

Receive Send Next-hops

1 (1, 0, 1) [-]

2 (2, 0, 2) [-]

3 (3, 0, 3) [-]
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2 1
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Round 2

Receive Send Next-hops

1  
(1, 0, 1)

(2, 0, 2),  

(3, 0, 3)

(2, 2, 1), 

(3, 1, 1)

[-, 

2, 

3]

2 
(2, 0, 2)

(1, 0, 1), 

(3, 0, 3)

(1, 2, 2), 

(3, 7, 2)

[1, 

-, 

3]

3 
(3, 0, 3)

(1, 0, 1), 

(2, 0, 2)

(1, 1, 3), 

(2, 7, 3)

[1, 

2, 

-]
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Round 3

Receive Send Next-hops

1  
(1, 0, 1) 
(2, 2, 1), 
(3, 1, 1) 

(1, 2, 2), 

(3, 7, 2),  

(1, 1, 3), 

(2, 7, 3)

[-, 

2, 

3]

2 
(1, 2, 2), 
(2, 0, 2), 
(3, 7, 2)

(2, 2, 1), 

(3, 1, 1), 

(1, 1, 3), 

(2, 7, 3)

(3, 3, 2)

[1, 

-, 

1]

3 
(1, 1, 3), 
(2, 7, 3), 
(3, 0, 3)

(2, 2, 1), 

(3, 1, 1), 

(1, 2, 2), 

(3, 7, 2)

(2, 3, 3)

[1, 

1, 

-]

2

1

3

2 1
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Round 4

Receive Send Next-hops

1  
(1, 0, 1) 
(2, 2, 1), 
(3, 1, 1) 

(3, 3, 2), 

(2, 3, 3)

[-, 

2, 

3]

2 
(1, 2, 2), 
(2, 0, 2), 
(3, 3, 2)

(2, 3, 3)

[1, 

-, 

1]

3 
(1, 1, 3), 
(2, 3, 3), 
(3, 0, 3)

(3, 3, 2)

[1, 

1, 

-]

2

1

3

2 1
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• The same algorithm applies to all destinations  

• Each node announces distance to each dest 

• I am distance d_A away from node A 

• I am distance d_B away from node B 

• I am distance d_C away from node C 

• … 

• Nodes are exchanging a vector of distances

Why not Spanning Tree Protocol? Why Distance “Vector”?



Distance Vector Protocol
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• Messages (Y,d,X): For root Y; From node X; advertising a distance d to Y 

• Initially each switch X initializes its routing table to (X,0,-) and distance 

infinity to all other destinations 

• Switches announce their entire distance vectors (routing table w/0 next hops) 

• Upon receiving a routing table from a node (say Z), each node X does: 

• For each destination Y in the announcement (distance(Y, Z) = d): 

• If current_distance_to_Y > d + cost of link to Z:  

• update current_distance_to_Y = d + cost of link to Z 

• update next_hop_to_destination = Z 

• If shortest distance to any destination changed, send all neighbors your 

distance vectors



• Protocol: 
• Exchanging that routing information with neighbors 

• What and when for exchanges 

• RIP is a protocol that implements DV (IETF RFC 2080) 

• Algorithm: 

• How to use the information from your neighbors to update your 

own routing tables?

Two Aspects to This Approach



Group Exercise:  

Lets run the Protocol again on this example 

(this time with distance vectors)
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Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 infinity

distance next-hop
1 infinity
2 0 -
3 infinity

distance next-hop
1 infinity
2 infinity
3 0 -



Round 2

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 7 3

distance next-hop
1 1 1
2 7 2
3 0 -



Round 3

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -



Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 2 1
2 0 -
3 3 1

distance next-hop
1 1 1
2 3 1
3 0 -



• Algorithm: 

• Nodes use Bellman-Ford to compute distances 

• Protocol 

• Nodes exchange distance vectors 

• Update their own routing tables 

• And exchange again… 

• Details: when to exchange, what to exchange, etc….

From Algorithm to Protocol



• When do you send messages? 

• When any of the distance changes 

• What about when the cost of a link changes? 

• Periodically, to ensure consistency between neighbors 

• What information do you send? 

• Could send entire vector 

• Or just updated entries 

• Do you send everyone the same information 

• Consider the following slides

Other Aspects of Protocol



Three node network
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distance next-hop
1 0 -
2 2 2
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -



Three node network

2

1

3

2 1

7

distance next-hop
1 0 -
2 infinity
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -



Round 1

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 3 1
3 0 -



Round 2

2

1

3

2 1

7

distance next-hop
1 0 -
2 4 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -



Round 3

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 5 1
3 0 -



Round 4

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

COUNT-TO-INFINITY 
problem!!!!



Count-to-infinity problem

2

1

3

2 1

7

distance next-hop
1 0 -
2 6 3
3 1 3

distance next-hop
1 1 1
2 7 1
3 0 -

Not just due to failures: 
Can happen with changes in cost!



• Do not advertise a path back to the node that is the next hop on the path 
• Called “split horizon” 
• Telling them about your entry going through them 

• Doesn’t tell them anything new 

• Perhaps misleads them that you have an independent path 

• Another solution: if you are using a next-hop’s path, then: 

• Tell them not to use your path (by telling them cost of infinity) 

• Called “poisoned reverse”

How Can You Fix This?



• Distance vector protocols can converge slowly 

• While these corner cases are rare 

• The resulting convergence delays can be significant

Convergence



• Link-State: 
• Global flood: each router’s link-state (#ports) 

• Send it once per link event, or periodically 

• Distance Vector: 
• Send longer vector (#dest) just to neighbors 

• But might end up triggering their updates 

• Send it every time DV changes (which can be often) 

• Tradeoff: 
• LS: Send it everywhere and be done in predictable time 

• DV: Send locally, and perhaps iterate until convergence

Comparison of Scalability



End of Distance-vector Routing



Internet Addressing



Addressing so far

• Each node has a “name” 

• We have so far worked only with names 

• Assumed that forwarding/routing etc. done on names 

• Today:  

• Why do we need addresses? 

• Why do we assign addresses the way we assign addresses?



Three requirements for addressing

• Scalable routing 
• How must state must be stored to forward packets? 

• How much state needs to be updated upon host arrival/departure? 

• Efficient forwarding 
• How quickly can one locate items in routing table? 

• Host must be able to recognize packet is for them



Layer 2 (link layer): “Flat” Addressing

• Uses MAC address 

• “Names”, remember? Used as identifier 

• Unique identifiers hardcoded in the hardware 

• No location information 

• Local area networks route on these “flat” addresses 

• Spanning Tree Protocol runs on switches and hosts 
• Each switch stores a separate routing entry for each host 
• End-hosts store nothing 

• Upon receiving a packet, an end-host: 

• Puts destination’s and its own MAC address in the header 

• Forwards it to the switch it is connected to 

• Destination is able to recognize the packet is for them using address



How does this meet our requirements?

• Scalable routing 
• How much state to forward packets? 

• One entry per host per switch 

• How much state updated for each arrival/departure? 

• One entry per host per switch 

• Efficient forwarding 
• Exact match lookup on MAC addresses (exact match is easy!) 

• Host must be able to recognize the packet is for them 
• MAC address does this perfectly 

Conclusion: L2 addressing does not enable scalable routing



How would you scale L2?

• Suppose we want to design a much larger L2 network 

• Must use MAC address as part of the address 

• Only way host knows that the packet is for them 

• But how would you enable scalable routing? 
• Small #routing entries (less than one entry per host per switch) 

• Small #updates (less than one update per switch per host change)



One possible Solution: Towards Internet-scale addressing

• Assign each end-host an addresses of the form — Switch:MAC 

• Spanning Tree Protocol runs only on switches 

• So, each switch has one entry per switch (rather than per host) 

• Upon receiving a packet, an end-host: 

• Puts destination’s and its own Switch:MAC address in the header 

• Forwards it to the switch it is connected to 

• Switches forward the packet using first part of the address 

• Destination is able to recognize the packet is for them using second part 
of the address



Layer 3: Hierarchical addressing

• Routing tables cannot have entry for each switch in the Internet 

• Use addresses of the form — Network:Host 

• Routers know how to reach all networks in the world 

• Routing algorithms only announce “Network” part of the addresses 

• Routing tables now store a next-hop for each “network” 

• Forwarding: 

• Routers ignore host part of the address 

• When the packet reaches the right network 

• Packet forwarded using Host part of the address 

• Using Layer 2 

• This was the original IP addressing scheme



What do I mean by “network”

• In the original IP addressing scheme … 

• Network meant an L2 network 

• Often referred to as a “subnet” 

• There are too many of them now to scale



Aggregation

• Aggregation: single forwarding entry used for many individual hosts 

• Example:  

• In our scalable L2 solution: aggregate was switch 

• In our scalable L3 solution: aggregate was network 

• Advantages: 

• Fewer entries and more stable 

• Change of hosts do not change tables 

• Don’t need to keep state on individual hosts



Hierarchical Structure

• The Internet is an “inter-network” 

• Used to connect networks together, not hosts 

• Forms a natural two-way hierarchy 

• Wide Area Network (WAN) delivers to the right “network” 

• Local Area Network (LAN) delivers to the right host



Hierarchical Addressing

• Can you think of an example? 

• Addressing in the US mail 

• Country 

• City, Zip code 

• Street 

• House Number 

• Occupant “Name”

???



IP addresses

• Unique 32 bit numbers associated with a host 

• Use dotted-quad notation, e.g., 128.84.139.5

Country City, State Street, Number Occupant

(8 bits) (8 bits) (8 bits) (8 bits)

10000000 0-1010100 10001011 00000-101

128 84 139 5

Network Host



Original Addressing mechanism

• First eight bits: network address (/8) 

• Slash notation indicates network address 

• Last 24 bits: host address 

• Assumed 256 networks were more than enough!!! 

• Now we have millions!



Suppose we want to accommodate more networks 

• We can allocate more bits to network address 

• Problem? 

• Fewer bits for host names 

• What if some networks need more hosts?



Today’s Addressing: CIDR

• Classless Inter-domain Routing 

• Idea: Flexible division between network and host addresses 

• Prefix is network address 

• Suffix is host address 

• Example: 
• 128.84.139.5/23 is a 23 bit prefix with: 
• First 23 bits for network address 

• Next 9 bits for host addresses: maximum 2^9 hosts 

• Terminology: “Slash 23”



Example for CIDR Addressing

• 128.84.139.5/23 is a 23 bit prefix with 2^9 host addresses

10000000 0-1010100 10001011 00000-101

128 84 139 5

Network (23 bits) Host (9 bits)



Allocating addresses

• Internet Corporation for Assigned Names and Numbers (ICANN) … 

• Allocates large blocks of addresses to Regional Internet Registries 

• E.g., American Registry for Internet Names (ARIN) … 

• That allocates blocks of addresses to Large Internet Service Providers (ISP) 

• That allocate addresses to individuals and smaller institutions 

• Fake example: 

• ICANN -> ARIN -> AT&T -> Cornell -> CS -> Me



Allocating addresses: Fake example

• ICANN gives ARIN several /8s 

• ARIN given AT&T one /8, 128.0/8 
• Network prefix: 10000000 

• AT&T gives Cornell one /16, 128.84/16 
• Network prefix: 10000000 01010100 

• Cornell gives CS one /24, 128.84.139/24 
• Network prefix: 10000000 01010100 10001011 

• CS given me a specific address 128.84.139.5 
• Network prefix: 10000000 01010100 10001011 00000101



How does this meet our requirements?

• To understand this, we need to understand the routing on the Internet 

• And to understand that, we need to understand the Internet



More next lecture!


