CS4450

Computer Networks:
Architecture and Protocols

Lecture 10
Fundamentals of Routing
Routing Protocols

Rachit Agarwal

Announcements

* Please submit regrade requests for Exam 1 before 11:59PM on Friday

* Problem Set 3 is released

 Reminder: this class has 3 programming assignments

* Mostly in late October and November

Goals for Today’s Lecture

e Learning about Routing Protocols
* Link State (Global view, Local computation)

* Distance Vector (Local view, Local computation)

Recap from last lecture

Recap: Routing using Spanning Trees

* Easy to design routing algorithms for (spanning) trees
e Step 1: Source node “floods” its packet on its spanning tree links

e Step 2: Whenever a node receives a packet:

* Forwards incoming packet out to all links other than the one
that sent the packet

 Amazing properties:
* No routing tables needed!
* No packets will ever loop.
* At least (and exactly) one packet must reach the destination

e Assuming no failures

Recap: Why do we need the network layer?

* Spanning Tree Protocol used in switched Ethernet to avoid broadcast storm
* Can be used for routing on the Internet (via “flooding” on spanning tree)

* Three fundamental issues:
* Unnecessary processing at end hosts (that are not the destination)

* Higher latency

e Lower available bandwidth

Recap: Routing Tables

* Routing table:

e Each switch: the next hop for each destination in the network
* Routing state: collection of routing tables across all nodes

* Two gquestions:
 How can we verify given routing state is valid?

 How can we produce valid routing state?

* Global routing state valid if and only if:

 There are no dead ends (other than destination)

 There are no “persistent” loops

Recap: The right way to think about Routing Tables

* Routing tables are nothing but
* A collection of (directed) spanning tree

* One for each destination

* Routing Protocols
 Mechanisms to producing valid routing tables
 What we will see:

* “n” spanning tree protocols running in parallel

Questions?

Creating Valid Routing State

e Easy to avoid dead ends
* Avoiding loops is hard

* The key difference between routing protocols is how they avoid loops!

Four flavors of protocols

* Create Tree, route on tree
* E.g., Spanning tree protocol (as in switched Ethernet)
* Good: easy, no (persistent) loops, no dead ends

* Not-so-good: unnecessary processing, high latency, low bandwidth

e Obtain a global view:
e E.g., Link state

 Distributed route computation:
* E.g., Distance vector

e E.g., Border Gateway Protocol

Routing Metrics

* Routing goals: compute paths with minimum X
X =number of “hops” (nodes in the middle)
e X =latency
e X =weight
e X = failure probability

* Generally assume every link has “cost” associated with it

* \We want to minimize the cost of the entire path
 We will focus on a subset of properties X, where:

 Cost of a path = sum of costs of individual links/nodes on the path
e E.g., number of hops and latency

#1: Create a Tree

#1: Create a Tree Out of Topology

 Remove enough links to create a tree containing all nodes
* Sounds familiar? Spanning trees!

* If the topology has no loops, then just make sure not sending packets
back from where they came
e That causes an immediate loop

* Therefore, if no loops in topology and no formation of immediate loops
ensures valid routing

 However... three challenges
 Unnecessary host resources used to process packets
* High latency
* Low bandwidth (utilization)

Global view

Two Aspects of Global View Method

* Protocol: What we focus on today
 Where to create global view
 How to create global view
* Disseminating route computation (if necessary)

* When to run route computation

e Algorithm: computing loop-free paths on graph
 Straightforward to compute lowest cost paths
* Using Dijkstra’s algorithm (please study; algorithms course)

* We won’t spend time on this

Where to create global view?

 One option: Central server
* Collects a global view
 Computes the routing table for each node
* “Installs” routing tables at each node
* Software-defined Networks: later in course

e Second option: At each router
* Each router collects a global view

 Computes its own routing table using Link-state protocol

* Link-state routing protocol
* OSPF is a specific implementation of link-state protocol
e |[ETF RFC 2328 (IPv4) or 5340 (IPv6)

Overview of Link-State Routing

e Every router knows its local “link state”
* Knows state of links to neighbors

* Up/down, and associated cost

* A router floods its link state to all other routers
e Uses a special packet — Link State Announcements (LSA)
 Announcement is delivered to all nodes (next slide)
* Hence, every router learns the entire network graph

* Runs route computation locally
 Computing least cost paths from them to all other nodes

e E.g., using Dijkstra’s algorithm

How does Flooding Work?

e “Link state announcement” (LSA) arrives on a link at a router

e That router:
e Remembers the packet
* Forwards the packet out all other links
* Does not send it out the incoming link
e Why?

* If a previously received announcement arrives again...

* Router drops it (no need to forward again)

Link-State Routing

Host A

Host E

Host B

Host C

Host D

d

Each Node Then has a Global View

Host B
Nelso
HostA - D/j{@ ,J\m I Host C
S j NS
121 S2 12”1
. Nee TN . Ne TN
ST / \ S3
\ S4 /
= oy
S5 / I !Se>I
E\e<e>%/m q7 7 NN
el
\ S%/ T Host D
Host E /
7 e 7
Node o
==
AN

When to Initiate Flooding of announcements?

* Topology change
 Link failures

* Link recovery

* Configuration change
* Link cost change (why would one change link cost?)

* Periodically
e Refresh the link-state information
e Typically (say) 30 minutes
* Corrects for possible corruption of data

Making Floods Reliable

e Reliable Flooding

* Ensure all nodes receive same link state announcements
* No announcements dropped

* Ensure all nodes use the latest version

e Suppose we can implement reliable flooding. How can it still fail?

e Can you ever have loops with link-state routing?

e Again: Can you ever have loops with link-state routing?

Are Loops Still Possible?

A and D think this is the path to C E thinks that this the path to C

E-C link fails, but D doesn’t know yet E reaches C via D, D reaches C via E
Loop!

Transient Disruptions

* Inconsistent link-state views
* Some routers know about failure before others
* The shortest paths are no longer consistent
e Can cause transient forwarding loops
* Transient loops are still a problem!

Convergence

* Eventually, all routers have consistent routing information
e E.g., all nodes having the same link-state database

* Here, eventually means “if nothing changes after a while”

* Forwarding is consistent after convergence

e All nodes have the same link-state database

* All nodes forward packets on same paths

* But while still converging, bad things can happen

Time to Reach Convergence

e Sources of convergence delay?

 Time to detect failure

* Time to flood link-state information (~longest RTT)

* Time to recompute forwarding tables

e Performance problems during convergence period?
* Dead ends
* Looping packets
 And some more we’ll see later

Link State is Conceptually Simple

Everyone floods links information
Everyone then knows graph of the network

Everyone independently computes paths on the graph

All the complexity is in the details

Local view, distributed route computation

#3: Distributed Route Computation

e Often getting a global view of the network is infeasible

* Distributed algorithms to compute feasible route
* Approach A: Finding optimal route for maximizing/minimizing a metric

 Approach B: Finding feasible route via exchanging paths among switches

Distributed Computation of Routes

* Each node computes the outgoing links (for each destination) based on:
 Local link costs

* Information advertised by neighbors

* Algorithms differ in what these exchanges contain
* Distance-vector: just the distance (and next hop) to each destination
e Path vector: the entire path to each destination

 We will focus on distance-vector for now

Recall: Routing Tables = Collection of Spanning Trees

* Can we use the spanning tree protocol (with modifications)?
* Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y

* |nitially each switch X announces (X,0,X) to its neighbors

32

“, n
n

Distance vector: a collection of STP in parallel
Lets run the Protocol on this example

(destination = 1)

Round 1

Recelve

Recelve

Recelve

Recelve

Why not Spanning Tree Protocol? Why Distance “Vector”?

* The same protocol/algorithm applies to all destinations

e Each node announces distance to each dest
* | am 4 hops away from node A

* | am 6 hops away from node B

* | am 3 hops away from node C

* Nodes are exchanging a vector of distances

Towards Distance Vector Protocol (with no failures)

* Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y
* |nitially each switch X announces (X,0,X) to its neighbors

e Switch X updates its view
* Upon receiving message (Y,d,Z) from Z,cheek-¥s-id
o e jebs eurrentrestsetrostaestnation =

e Switch X computes its shortest distance from the reet destination
* If current_distance _to Y >d + cost of link to Z:
e update current_distance _to Y =d + cost of link to Z

* |If rootchanged-OR shortest distance to the reet destination changed,
send all neighbors updated message (Y, current_distance to Y, X)

40

Lets run the Protocol on this example

Round 1

Round 2

Vay

Round 3

TR T

Round 4

Recelve

Towards Distance-vector protocol with next-hops (no failures)
* Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y
* |nitially each switch X announces (X,0,X) to its neighbors

e Switch X updates its view
* Upon receiving message (Y,d,Z) from Z,cheek-¥s-id
o e jebs eurrentrestsetrostaestnation =

e Switch X computes its shortest distance from the reet destination
* If current_distance _to Y >d + cost of link to Z:
e update current_distance to Y=d
* update next_hop_to_destination =2

* |If rootchanged-OR shortest distance to the reet destination changed,
send all neighbors updated message (Y, current_distance _to Y, X)

46

Lets run the Protocol on this example

(this time with next-hops)

Round 1

Receive Send Next-hops

Round 2

Round 3

Receive Send Next-hops

Round 4

Receive Send Next-hops

Routing tables Next-hops

Why not Spanning Tree Protocol? Why Distance “Vector”?

 The same algorithm applies to all destinations

e Each node announces distance to each dest
* | am distance d_A away from node A

* | am distance d_B away from node B

* | am distance d_C away from node C

* Nodes are exchanging a vector of distances

Distance Vector Protocol

* Messages (Y,d,X): For root Y; From node X; advertising a distanced to Y

* |nitially each switch X initializes its routing table to (X,0,-) and distance
infinity to all other destinations

* Switches announce their entire distance vectors (routing table w/0 next hops)

* Upon receiving a routing table from a node (say X), each node does:
* For each destination Y in the announcement (distance(X, Y) = d):
* |f current_distance _to Y > d + cost of link to X:
e update current_distance to Y=d

e update next_hop_to destination = X

* If shortest distance to any destination changed, send all neighbors your
distance vectors

54

