
Computer Networks:

Architecture and Protocols

CS4450

Lecture 5

- Three Architectural Principles


- Design Goals

Rachit Agarwal



Announcements

• Exam conflict:

• Today is the last day to announce your exam conflicts.


• Exam 1: 09/21

• Exam 2: 10/24

• Exam 3: 12/05


• Send an email to cs4450-staff@cornell.edu

• Thank you to those who already sent us an email

• We will send an email to all those who have a conflict


• Problem set 1 solutions released (on Ed discussions)


• Problem set 2 released (on course website)

mailto:cs4450-staff@cornell.edu


Context for Today’s Lecture

• So far, we have discussed several high-level concepts

• Network sharing

• End-to-end working of the Internet

• Addressing, Routing, Switch/Router functionality, etc. 


• And, have dived deep into several topics:

• Circuit switching and packet switching (especially the “why”)

• Delays (transmission, propagation)


• Problem set 2—first two questions—dive deeper into these. Goals:

• Problem 1: build a deep understanding of delays

• Problem 2: build a deep understanding of circuit vs packet switching

• Problem 3, 4, 5, 6: next 2 lectures


• Today: Continue to lay the foundation for rest of the course



Goals for Today’s Lecture

• Wrap up the three architectural principles:

• Layering

• End-to-end principle

• Fate Sharing principle


• Design goals for computer networks:

• Eight of them



Quick recap



• Locating the destination: Naming, addressing

• Mapping of names to addresses using Domain Name System


• Finding a path to the destination: Routing

• Distributed algorithm that computes and stores routing tables


• Sending data to the destination: Forwarding

• Input queues, virtual output queues, output queues 

• Enablers: Packet header (address), and routing table (outgoing link)


• Reliability: Failure handling

• Not much discussion, but the question: hosts or networks?

Recap: four fundamental problems!



Recap: the final piece in the story — Host network stack

Of Sockets and Ports


• When a process wants access to the network, it opens a socket, which is 
associated with a port


• Socket: an OS mechanism that connects processes to the network stack


• Port: number that identifies that particular socket


• The port number is used by the OS to direct incoming packets



• Applications deal with data


• End-host network stacks move data from applications to the fabric


• Network fabric delivers data between network stacks


• Network (stack + fabric) delivers data between applications


• What is the interface between applications and network stacks?

• Sockets


• What is the interface between network stacks and network fabric?

• Packet headers


• The right way to think about sockets and packets

Recap: “Thinking” Network System Modularity



• How to break system into modules?

• Classic decomposition into tasks


• Where are modules implemented?

• Hosts?

• Routers?

• Both?


• Where is state stored?

• Hosts?

• Routers?

• Both?

Network Modularity Decisions



• How to break system into modules

• Layering


• Where are modules implemented

• End-to-End Principle


• Where is state stored?

• Fate-Sharing

Leads to three design principles



• A kind of modularity

• Functionality separated into layers

• Layer n interfaces with only layer n-1 and layer n+1


• Hides complexity of surrounding layers

Layering

Built on top of

reliable delivery

Built on top of best-
effort forwarding

Built on top of 
best-effort routing

Built on top of 
physical bit transfer



An end-to-end view of the layers

• Application: Providing network support for apps

• Transport (L4): (Reliable) end-to-end delivery

• Network (L3): Routing and forwarding across networks

• Datalink (L2): Forwarding within a local network

• Physical (L1): Bits on wire

Why does the packet go all the way to network layer at each hop?



Questions?



• How to break system into modules?

• Layering


• Where are modules implemented?

• End-to-End Principle


• Where is state stored?

• Fate-Sharing

Three Internet Design Principles



• Layers are simple if only on a single machine

• Just stack of modules interacting with those above/below


• But we need to implement layers across machines

• Hosts

• Routers/switches


• What gets implemented where? And why?

Distributing Layers across Network 



• Bits arrive on wire, must make it up to application


• Therefore, all layers must exist at host!

What gets implemented on Host?



• Bits arrive on wire

• Physical layer necessary


• Packets must be forwarded to next router/switch

• Datalink layer necessary


• Routers participate in global delivery

• Network layer necessary


• Routers do not support reliable delivery

• Transport layer (and above) not supported

• Why?

What gets implemented on Router?



• Lower three layers implemented everywhere


• Top two layers only implemented at hosts

Visualizing what gets implemented where

End host

Router/switch



• Layering doesn't tell you what services each layer should provide


• What is an effective division of responsibility between various layers?

But why implemented this way?



If a function can completely and correctly be implemented only with the 
knowledge and help of the application standing at the endpoints of the 
communication system,


then providing that function as a feature of the communication system 
itself is not possible. 


Sometimes providing an incomplete version of that function as a feature 
of the communication system itself may be useful as a performance 
enhancement.

End-to-end Principle



End-to-end Principle: an example

• Suppose each link layer transmission is reliable

• Does that ensure end-to-end (application-to-application) reliability? 


• Suppose network layer is reliable

• Does that ensure end-to-end (application-to-application) reliability?



If a function can completely and correctly be implemented only with the 
knowledge and help of the application standing at the endpoints of the 
communication system,


then providing that function as a feature of the communication system 
itself is not possible. 


Sometimes providing an incomplete version of that function as a feature 
of the communication system itself may be useful as a performance 
enhancement.

End-to-end Principle: lets read again



Assume the condition (IF) holds. Then, 

• End-to-end implementation

• Correct

• Generalized, and simplifies lower layers


• In-network implementation

• Insufficient

• May help — or hurt — performance

End-to-end Principle (Interpretation)



What does the end mean?

End-to-end Principle (Interpretation)



• Everyone knows what it is

• So, you must!


• Everyone believes it

• So, you must!


• Nobody knows what it means

• So, it is okay if you feel so too.

End-to-end Principle (Three things to know)



Questions?



• How to break system into modules?

• Layering


• Where are modules implemented?

• End-to-End Principle


• Where is the state stored?

• Fate-sharing

Three Internet Design Principles



• Note that the end-to-end principle relied on “fate-sharing”

• Invariants only break when endpoints themselves break

• Minimize the dependence on other network elements


• This should dictate placement of state


• What does state mean?

• Network stacks store state: 


• socket/port related

• (If reliability implemented at hosts) Reliability related

• …


• Network routers store state:

• Routing tables (across networks)

• Forwarding state (within a local network)

• ….

Fate-Sharing



• When storing state in a distributed system, colocate it with entities that 
rely on that state


• Only way failure can cause loss of the critical state is if the entity that 
cares about it also fails …

• … in which case it doesn’t matter


• Often argues for keeping network state at end hosts rather than inside 
routers

• E.g., packet switching rather than circuit switching

General Principle: Fate-Sharing



Questions?



• How to break system into modules

• Dictated by layering


• Where modules are implemented

• Dictated by End-to-End Principle


• Where state is stored

• Dictated by Fate Sharing

Decisions and their Principles



From Architecture to Design:


Design Goals



• Wrote a paper in 1988 that tried to capture why the Internet turned out 
as it did


• It described an ordered list of priorities that informed the decision


• What do you think those priorities were?

David Clark



• Connect existing networks


• Robust in face of failures


• Support multiple types of delivery services


• Accommodate a variety of networks


• Allow distributed management


• Easy host attachment


• Cost effective


• Allow resource accountability

Internet Design Goals (Clark ’88)



Want one protocol that could be used to connect any pair of (existing) 
networks


• Different networks may have different needs

• For some: reliable delivery more important

• For others: performance more important

• But there is one need that every network has: connectivity 


• The Internet Protocol (IP) is that unifying protocol

• All (existing) networks must be able to implement it

#1: Connect Existing Networks



As long as network is not partitioned, two hosts should be able to 
communicate (eventually)


• Must eventually recover from failures


• Very successful in the past; unclear how relevant now

• Availability is becoming increasingly important than recovery

#2: Robust in Face of Failures



Different delivery services (applications) should be able to co-exist


• Already implies an application-neutral framework


• Build lowest common denominator service

• Again: connectivity

• Applications that need reliability may use it

• Applications that do not need reliability can ignore it


• This isn’t as obvious as it seems…

• What would applications in 2050 need?

#3: Support Multiple Types of Delivery Services



Questions?



Must be able to support different networks with different hardware


• Incredibly successful!

• Minimal requirements on networks

• No need for reliability, in-order, fixed size packets, etc.

• A result of aiming for lowest common denominator


• Again: Focus on connectivity

• Let networks do specific implementations for other functionalities

• Automatically adapt: WiFi, LTE, 3G, 4G, 5G ….

#4: Variety of Networks



No need to have a single “vantage” point to manage networks


• Both a curse and a blessing

• Important for easy deployment

• Makes management hard today


• Recent efforts have improved management of individual networks

• But no attempt to manage the Internet as a whole…

• What might make this complex?

#5: Decentralized Management



The mechanism that allows hosts to attach to networks must be made as 
easy as possible, but no easier 


• Clark observes that cost of host attachment may be higher because hosts 
had to be smart


• But the administrative cost of adding hosts is very low, which is probably 
more important


• Plug-and-play kind of behavior…


• And now most hosts are smart for other reasons

• So the cost is actually minimal…

#6: Easy Host Attachment



Make networks as cheap as possible, but no cheaper


• Cheaper than circuit switching at low end


• More expensive than circuit switching at high end


• Not a bad compromise:

• Cheap where it counts (low-end)

• More expensive for those who can pay…

#7: Cost Effective



Each network element must be made accountable for its resource usage


• Failure!

#8: Resource Accountability



“We reject kings, presidents and voting. We believe in rough 
consensus and running code.”


- - David Clark

Internet Motto



• Build something that works


• Connect existing networks


• Robust in face of failures


• Support multiple types of delivery service


• Accommodate a variety of networks


• Allow distributed management


• Easy host attachment


• Cost effective


• Allow resource accountability

Real Goals



• What goals are missing from this list?

• Suggestions?


• What would the resulting design look like?

Questions to think about



• Performance


• Security

• Resilience to attacks (denial-of-service)

• Endpoint security

• Tracking down misbehaving users


• Privacy


• Availability


• Resource sharing (fairness, etc.)


• ISP-level concerns

• Economic issues of interconnection

Some of the missing issues



Questions?



• Beginning of “Design of computer networks”


• Start with Layer 1 and Layer 2

• Physical bits (very little)

• Local best-effort forwarding

• Lots of interesting aspects

• Lots of group activities

• …

Next lecture


