CS4450

Computer Networks:
Architecture and Protocols

Lecture 3
- Packet Delays
- How the Internet works

Rachit Agarwal

Context for and Goals of Today’s Lecture

e Today’s lecture is going to be one of the hardest lectures
* If you understand everything

 There is something wrong!

e Goals:
* Wrap up discussion on transmission and propagation delays
* How does the Internet work?

e An end-to-end view

But, as usual, lets start with:

what we have learnt so far

Recap: What is a computer network?

A set of network elements connected together, that implement a set of
protocols for the purpose of sharing resources at the end hosts

Recap: network can be abstractly represented as a graph

‘l

llL

Destination 'i

Source

AL

5

Go gle

Destination

Recap: Sharing the network

Source Path

a

Path

o ®

Destination n Google

Destination

Recap: Performance metrics in computer networks!

 Bandwidth: Number of bits sent per second (bits per second, or bps)

* Depends on hardware, network traffic conditions, ...

* Delay: Time for all bits to go from source to destination (seconds)

* Depends on hardware, distance, traffic from other sources, ...

 Many other performance metrics
 Reliability, fairness, etc.

e We will come back to other metrics later ...

Recap: Two approaches to sharing networks

* First: Reservations

* Reserve (peak) bandwidth needed in advance

 One way to implement reservations: circuit switching
e Source sends a reservation request for peak demand to destination
e Switches/routers establish a “circuit”
e Source sends data

* Source sends a “teardown circuit” message

Recap: Circuit switching (reservation-based sharing) summary

* Goods:
* Predictable performance
e Reliable delivery

e Simple forwarding mechanism

* Not-so-goods
e Handling failures
e Resource underutilization
* Blocked connections
* Connection set up overheads
* Per-connection state in switches (scalability problem)

Recap: Solution: Packet switching

* Break data into smaller pieces
* Packets!

* Transmit the packets without any reservations
* And, hope for the best

Recap: Packet switching summary

e Goods:
* With proper mechanisms in place
e Easier to handle failures
* No resource underutilization
- ’
A source can send more if others don’t use resources

* No blocked connection problem

* No per-connection state

* No set-up cost

* Not-so-goods:
e Unpredictable performance
* High latency

e Packet header overhead

Summary of network sharing

Statistical multiplexing

e Statistical multiplexing: combining demands to share resources efficiently

* Long history in computer science
* Processes on an OS (vs every process has own core)

* Cloud computing (vs every one has own datacenter)

* Based on the premise that:
* Peak of aggregate load is << aggregate of peak load

* Therefore, it is better to share resources than to strictly partition them ...

Two approaches to sharing networks

Both embody statistical multiplexing

e Reservation: sharing at connection level
e Resources shared between connections currently in system

* Reserve the peak demand

 On-demand: sharing at packet level

e Resources shared between packets currently in system
* Resources given out on packet-by-packet basis

* No reservation of resources

Understanding delay/latency

Packet delay/latency

* Consists of six components
 Link properties:
* Transmission delay

* Propagation delay

* OS internals:
* Processing delay
 Queueing delay

e Traffic matrix and switch internals:
* Processing delay
* Queueing delay

* First, consider transmission, propagation delays

* Queueing delay and processing delays later in the course

Transmission delay
 How long does it take to push all the bits of a packet into a link?
» = Packet size / Link bandwidth

 Example:
* Packet size = 1500Byte
* Bandwidth = 100Mbps
e 1500*%8/100*1024*1024 seconds

* Independent of the link length (distance that the packet traverses)

Propagation delay

* How long does it take to move one bit from one end of a link to the other?

* = Link length / Propagation speed of link

* Propagation speed ~ some fraction of speed of light

 Example:
e Length = 30,000 meters
e Delay = 30*1000/3*100,000,000 second = 100us

* Independent of packet size and bandwidth

Group Exercise:

How long does it take for a packet on a link?

Constraints:

* Packet size = 1000Byte
* Bandwidth = 100Mbps
e Length = 30,000m

Solution to Group Exercise:

How long does it take for a packet on a link?

~180us
Why?

Questions?

Today’s lecture: How does the Internet work?

1. Dive into end-to-end: from source to destination
2. First look into switches: routing, queueing, forwarding

3. First look into network stack: sockets, ports, “the stack”

How does the Internet work?

An end-to-end view

Four fundamental problems!

Naming, addressing: Locating the destination
Routing: Finding a path to the destination
Forwarding: Sending data to the destination

Reliability: Handling failures, packet drops, etc.

Four fundamental problems!

Naming, Routing, Forwarding, Reliability
* Each is motivated by a clear need
* The solutions are not always clean or deep

e But if you keep in mind what the problem is
 You’ll be able to understand the solutions

* When the right time comes :-)

Will take the entire course to learn these:

Lets get an end-to-end picture!

Fundamental problem #1: Naming and Addressing

e Network Address: where host is located

* Requires an address for the destination host

* Host Name: which host it is

 why do we need a name?

 Answer: When you move a host to new building
* Address changes

* Name does not change
 Same thing with your own name and address!

 Remember the analogy: human names, addresses, post office, letters

Names versus addresses

* Consider when you access a web page

* Insert URL into browser (eg, www.cornell.edu)

* Packets sent to web site (reliably)

* Packet reach application on destination host

 How do you get to the website?

* URL is user-level name (eg, www.cornell.edu)

* Network needs address (eg, where is www.cornell.edu)?

 Must map names to addresses

 Just like we use an address book to map human names to addresses

http://www.cornell.edu
http://www.cornell.edu
http://www.cornell.edu

Mapping Names to Addresses

* On the Internet, we only name hosts (sort of)

* URLs are based on the name of the host containing the content (that
is, www.cornell.edu names a host)

* Before you can send packets to www.cornell.edu, you must resolve names
into the host’s address

* Done by the Domain Name System (DNS)

The source knows the name;

Maps that name to an address using DNS!

http://www.cornell.edu
http://www.cornell.edu

Questions?

Fundamental problem #2

Routing packets through network elements (eg, routers) to destination

e Given destination address (and name), how does each switch/router
know where to send the packet so that the packet reaches its destination

* When a packet arrives at a router
* a routing table determines which outgoing link the packet is sent on
 Computed using routing protocols

Routing protocols (conceptually)

 Distributed algorithm that runs between routers
 Distributed means no single router has “full” view of the network

* Exchange of messages to gather “enough” information ...
e ... about the network topology
 Compute paths through that topology

e Store forwarding information in each router
* If packet is destined for X, send out using link |1
* |f packet is destined for Y, send out using link 12

* Can packets going to different destinations sent out to same link?

* We call this a routing table

Questions?

Fundamental problem #3

Queueing and Forwarding of packets at switches/routers

Output queue

Input queue

Virtual output queue

Fundamental problem #3

Queueing and Forwarding of packets at switches/routers

* Queueing: When a packet arrives, store it in “input queues”
* Each incoming queue divided into multiple virtual output queues
* One virtual output queue per outgoing link
* When a packet arrives:
* Look up its destination’s address (how?)
* Find the link on which the packet will be forwarded (how?)

» Store the packet in corresponding virtual output queue

* Forwarding: When the outgoing link free
* Pick a packet from the corresponding virtual output queue

e forward the packet!

What must packets carry to enable forwarding?

 Packets must describe where it should be sent

* Requires an address for the destination

* Packets must describe where its coming from
* For handling failures, etc.

* Requires an address for the source

* Packets must carry data

* can be bits in a file, image, whatever

Switch Processing and Queueing delay

* Processing delay
» Easy; each switch/router needs to decide where to put packet

* Requires checking header, etc.

* Queueing delay
* Harder; depends on “how many packets are in front of me”
* Depends on network load

* As load increases, queueing delay increases

* In an extreme case, increase in network load

* results in packet drops

* We will return to this in much more depth later ...

Questions?

Fundamental problem #4

How do you deliver packets reliable?

e Packets can be dropped along the way
e Buffers in router can overflow
* Routers can crash while buffering packets

 Links can garble packets

 How do you make sure packets arrive safely on an unreliable network?
* Or, at least, know if they are delivered?

e Want no false positives, and high change of success

Two questions about reliability

* Who is responsible for this? (architecture)
* Network?
 Host?

* How is it implemented? (engineering)

* We will consider both perspectives

Questions?

Finishing our story

 We now have the address of the web site
* And, a route/path to the destination
* And, mechanisms in place to forward the packets at each switch/router
* In areliable manner
* So, we can send packets from source to destination

* Are we done?

 When a packet arrives at a host, what does the host do with it?

* To which process (application) should the packet be sent?

* |f the packet header only has the destination address, how does the host
know where to deliver packet?
* There may be multiple applications on that destination

And while we are finishing our story

* Who puts the source address, source port, destination address,

destination port in the packet header?

The final piece in the game: End-host stack

Of Sockets and Ports

* When a process wants access to the network, it opens a socket, which is
associated with a port

* Socket: an OS mechanism that connects processes to the network stack
* Port: number that identifies that particular socket

 The port number is used by the OS to direct incoming packets

Implications for Packet Header

* Packet Header must include:
* Destination address (used by network)
* Destination port (used by network stack)
 And?
* Source address (used by network)

* Source port (used by network stack)

* When a packet arrives at the destination host, packet is delivered to the
socket associated with the destination port

* More details later

Separation of concerns

* Network: Deliver packets from host to host (based on address)
* Network stack (OS): Deliver packets to appropriate socket (based on port)

* Applications:
e Send and receive packets

* Understand content of packet bodies

Secret of the Internet’s success is getting
these and other abstractions right

The end-to-end story

* Application opens a socket that allows it to connect to the network stack
 Maps name of the web site to its address using DNS

* The network stack at the source embeds the address and port for both
the source and the destination in packet header

* Each router constructs a routing table using a distributed algorithm

* Each router uses destination address in the packet header to look up the
outgoing link in the routing table
 And when the link is free, forwards the packet

 When a packet arrives the destination:

 The network stack at the destination uses the port to forward the
packet to the right application

Today’s lecture
* The Internet is a huge, complicated system

* One can study the parts in isolation
* Routing
* Ports, sockets

* Network stack

e But the pieces all fit together in a particular way

* Today was quick overview of how pieces fit...
 Don’t worry if you didn’t understand much of it
* You probably absorbed more than you realize

