
Computer	Networks:	
Architecture	and	Protocols

CS4450

Lecture	3	
-	“Packets”	and	Delays	

-	How	the	Internet	works

Rachit	Agarwal



Announcements

• Ed	Discussions	has	been	set	up	

• We	will	release	office	hours	on	Wednesday	

• Email	strategy	

• This	is	a	large	class	
• Hard	for	me	to	carefully	answer	each	and	every	email	

• Please	send	an	email	to	cs4450questions@gmail.com	

• Direct	emails	to	me	only	if	they	are	for	my	eyes	only	(give	reason)

mailto:cs4450questions@gmail.com


Context	for	and	Goals	of	Today’s	Lecture

• Context:	
• Today’s	lecture	is	going	to	be	one	of	the	hardest	lectures	

• If	you	understand	everything	
• There	is	something	wrong!	

• Goals:	
• Propagation	and	transmission	delays	

• How	does	the	Internet	work?	
• An	end-to-end	view



But,	lets	start	with:		

what	we	learnt	last	lecture



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts

Recap:	What	is	a	computer	network?



Recap:	Sharing	the	network

PathSource

Destination

Source

Destination

Path



• Bandwidth:	Number	of	bits	sent	per	unit	time	(bits	per	second,	or	bps)	

• Capacity:	depends	on	hardware	
• Utilization:	depends	on	network	traffic	conditions	

• Propagation	delay:	Time	for	one	bit	to	move	through	the	link	(seconds)	

• Many	other	performance	metrics	

• Reliability,	fairness,	etc.	
• We	will	come	back	to	these	later.

Recap:	Performance	metrics	in	computer	networks!



• First:	Reservations	
• Reserve	(peak)	bandwidth	needed	in	advance	

• One	way	to	implement	reservations:	circuit	switching

Recap:	Two	approaches	to	sharing	networks



• Goods:	
• Predictable	performance	

• Reliable	delivery	
• Simple	forwarding	mechanism	

• Not-so-goods:	
• Handling	failures	
• Resource	underutilization	
• Blocked	connections	
• Connection	set	up	overheads	
• Per-connection	state	in	switches	(scalability	problem)

Circuit	switching	summary



• Break	data	into	smaller	pieces	

• Packets!	

• Transmit	the	packets	without	any	reservations	

• And,	hope	for	the	best

Recap:	Solution:	Packet	switching



• Goods:	
• Easier	to	handle	failures	
• No	resource	underutilization	
• No	blocked	connection	problem	

• No	per-connection	state	
• No	set-up	cost	

• Not-so-goods:	
• Unpredictable	performance	

• High	latency	
• Packet	header	overhead

Recap:	Packet	switching	summary



Questions?



Summary	of	network	sharing



• Statistical	multiplexing:	combining	demands	to	share	resources	efficiently	

• Long	history	in	computer	science	

• Processes	on	an	OS	(vs	every	process	has	own	core)	
• Cloud	computing	(vs	every	one	has	own	datacenter)	

• Based	on	the	premise	that:	

• Sum	of	instantaneous	demands	<<	sum	of	peak	demands	

• Therefore,	it	is	better	to	share	resources	than	to	strictly	partition	them	…

Statistical	multiplexing



Both	embody	statistical	multiplexing	

• Reservation:	sharing	at	connection	level	
• Resources	shared	between	connections	currently	in	system	

• Reserve	the	peak	demand	for	a	flow	

• On-demand:	sharing	at	packet	level	

• Resources	shared	between	packets	currently	in	system	

• Resources	given	out	on	packet-by-packet	basis	
• No	reservation	of	resources

Two	approaches	to	sharing	networks



Questions?



Understanding	delay/latency



• Consists	of	four	components	

• Propagation	delay	(hardware	properties,	distance)	
• Transmission	delay	(hardware	properties)	

• Queueing	delay	(traffic,	switch	internals)	
• Processing	delay	(end	hosts)	

• First,	consider	propagation	and	transmission	delays	

• Then	queueing	delay	

• Ignore	processing	delays	(for	now)

Packet	Delay/Latency



• How	long	does	it	take	to	move	one	bit	from	one	end	of	the	link	to	other?	

• Link	length	/	Propagation	speed	of	link	
• Propagation	speed	~	some	fraction	of	speed	of	light	

• Example:	

• Length	=	30,000	meters	

• Delay	=	30*1000/3*100,000,000	second	=	100us

Propagation	delay



• How	long	does	it	take	to	push	all	the	bits	of	a	packet	into	a	link?	

• Packet	size	/	Transmission	rate	of	the	link	

• Transmission	rate	=	Share	of	Bandwidth	

• Example:	

• Packet	size	=	1000Byte	
• Rate	=	100Mbps	

• 1000*8/100*1024*1024	seconds	~76.3us

Transmission	delay



Questions?



Group	Exercise	3:		

How	long	does	it	take	for	a	packet	to	go		
from	one	end	of	the	link	to	another	end?

Constraints:	
• Packet	size	=	1000Byte	
• Rate	=	100Mbps	

• Length	=	30,000m

Answer:	176.3us	

Why?



Group	Exercise	3:		

How	long	does	it	take	for	a	packet	to	go		
from	one	end	of	the	link	to	another	end?



How	does	the	Internet	work?		

An	end-to-end	view



• Dive	into	end-to-end:	from	source	to	destination	

• First	look	into	switches:	routing,	queueing,	forwarding	

• First	look	into	network	stacks:	sockets,	ports,	“the	stack”

The	rest	of	the	lecture



• Naming,	addressing:	Locating	the	destination	

• Routing:	Finding	a	path	to	the	destination	

• Forwarding:	Sending	data	to	the	destination	

• Reliability:	Handling	failures,	packet	drops,	etc.

Four	fundamental	problems!



Naming,	Routing,	Forwarding,	Reliability	

• Each	is	motivated	by	a	clear	need	

• The	solutions	are	not	always	clean	or	deep	

• But	if	you	keep	in	mind	what	the	problem	is	

• You’ll	be	able	to	understand	the	solutions	
• When	the	right	time	comes	:-)

Four	fundamental	problems!

Will	take	the	entire	course	to	learn	these:		

Lets	get	an	end-to-end	picture!



• Network	Address:	where	host	is	located	
• Requires	an	address	for	the	destination	host	

• Host	Name:	which	host	it	is	

• why	do	we	need	a	name?	

• When	you	move	a	host	to	new	building	

• Address	changes		
• Name	does	not	change	

• Same	thing	with	your	own	name	and	address!	

• Remember	the	analogy:	human	names,	addresses,	post	office,	letters

Fundamental	problem	#1:	Naming	and	Addressing



• Consider	when	you	access	a	web	page	
• Insert	URL	into	browser	(eg,	www.cornell.edu)	
• Packets	sent	to	web	site	(reliably)	
• Packet	reach	application	on	destination	host	

• How	do	you	get	to	the	website?	
• URL	is	user-level	name	(eg,	www.cornell.edu)	

• Network	needs	address	(eg,	where	is	www.cornell.edu)?	

• Must	map	names	to	addresses	

• Just	like	we	use	an	address	book	to	map	human	names	to	addresses

Names	versus	addresses

http://www.cornell.edu
http://www.cornell.edu
http://www.cornell.edu


• On	the	Internet,	we	only	name	hosts	(sort	of)	

• URLs	are	based	on	the	name	of	the	host	containing	the	content	(that	
is,	www.cornell.edu	names	a	host)	

• Before	you	can	send	packets	to	www.cornell.edu,	you	must	resolve	names	
into	the	host’s	address	

• Done	by	the	Domain	Name	System	(DNS)

Mapping	Names	to	Addresses

The	source	knows	the	name;		

Maps	that	name	to	an	address	using	DNS!

http://www.cornell.edu
http://www.cornell.edu


Questions?



Routing	packets	through	network	elements	(eg,	routers)	to	destination	

• Given	destination	address	(and	name),	how	does	each	switch/router	
know	where	to	send	the	packet	so	that	the	packet	reaches	its	destination	

• When	a	packet	arrives	at	a	router	

• a	routing	table	determines	which	outgoing	link	the	packet	is	sent	on	

• Computed	using	routing	protocols

Fundamental	problem	#2



• Distributed	algorithm	that	runs	between	routers	

• Distributed	means	no	single	router	has	“full”	view	of	the	network	

• Exchange	of	messages	to	gather	“enough”	information	…	

• …	about	the	network	topology	

• Compute	paths	through	that	topology	

• Store	forwarding	information	in	each	router	

• If	packet	is	destined	for	X,	send	out	using	link	l1	
• If	packet	is	destined	for	Y,	send	out	using	link	l2	
• Can	packets	going	to	different	destinations	sent	out	to	same	link?	

• We	call	this	a	routing	table

Routing	protocols	(conceptually)



Questions?



Queueing	and	Forwarding	of	packets	at	switches/routers

Fundamental	problem	#3

Input	queue

Virtual	output	queue

Output	queue



Queueing	and	Forwarding	of	packets	at	switches/routers	

• Queueing:	When	a	packet	arrives,	store	it	in	“input	queues”		

• Each	incoming	queue	divided	into	multiple	virtual	output	queues	

• One	virtual	output	queue	per	outgoing	link	
• When	a	packet	arrives:	

• Look	up	its	destination’s	address	(how?)	
• Find	the	link	on	which	the	packet	will	be	forwarded	(how?)	
• Store	the	packet	in	corresponding	virtual	output	queue	

• Forwarding:	When	the	outgoing	link	free	

• Pick	a	packet	from	the	corresponding	virtual	output	queue	

• forward	the	packet!

Fundamental	problem	#3



• Packets	must	describe	where	it	should	be	sent	

• Requires	an	address	for	the	destination	

• Packets	must	describe	where	its	coming	from	

• For	handling	failures,	etc.	
• Requires	an	address	for	the	source	

• Packets	must	carry	data	

• can	be	bits	in	a	file,	image,	whatever

What	must	packets	carry	to	enable	forwarding?

Header Data



• Processing	delay	
• Easy;	each	switch/router	needs	to	decide	where	to	put	packet	
• Requires	checking	header,	etc.	

• Queueing	delay	
• Harder;	depends	on	“how	many	packets	are	in	front	of	me”		

• Depends	on	network	load	
• As	load	increases,	queueing	delay	increases	

• In	an	extreme	case,	increase	in	network	load	

• results	in	packet	drops	

• We	will	return	to	this	in	much	more	depth	later	…

Switch	Processing	and	Queueing	delay



Questions?



How	do	you	deliver	packets	reliable?	

• Packets	can	be	dropped	along	the	way	
• Buffers	in	router	can	overflow	
• Routers	can	crash	while	buffering	packets	
• Links	can	garble	packets	

• How	do	you	make	sure	packets	arrive	safely	on	an	unreliable	network?	

• Or,	at	least,	know	if	they	are	delivered?	
• Want	no	false	positives,	and	high	change	of	success

Fundamental	problem	#4



• Who	is	responsible	for	this?	(architecture)	

• Network?	
• Host?	

• How	is	it	implemented?	(engineering)	

• We	will	consider	both	perspectives

Two	questions	about	reliability



Questions?



• We	now	have	the	address	of	the	web	site	

• And,	a	route/path	to	the	destination	
• And,	mechanisms	in	place	to	forward	the	packets	at	each	switch/router	

• In	a	reliable	manner	

• So,	we	can	send	packets	from	source	to	destination	

• Are	we	done?	

• When	a	packet	arrives	at	a	host,	what	does	the	host	do	with	it?	

• To	which	process	(application)	should	the	packet	be	sent?	

• If	the	packet	header	only	has	the	destination	address,	how	does	the	host	
know	where	to	deliver	packet?	

• There	may	be	multiple	applications	on	that	destination

Finishing	our	story



• Who	puts	the	source	address,	source	port,	destination	address,	

destination	port	in	the	packet	header?

And	while	we	are	finishing	our	story	….



The	final	piece	in	the	game:	End-host	stack

Of	Sockets	and	Ports	

• When	a	process	wants	access	to	the	network,	it	opens	a	socket,	which	is	
associated	with	a	port	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	network	stack	

• Port:	number	that	identifies	that	particular	socket	

• The	port	number	is	used	by	the	OS	to	direct	incoming	packets



• Packet	Header	must	include:	

• Destination	address	(used	by	network)	
• Destination	port	(used	by	network	stack)	
• And?	
• Source	address	(used	by	network)	
• Source	port	(used	by	network	stack)	

• When	a	packet	arrives	at	the	destination	host,	packet	is	delivered	to	the	
socket	associated	with	the	destination	port	

• More	details	later

Implications	for	Packet	Header



• Network:	Deliver	packets	from	host	to	host	(based	on	address)	

• Network	stack	(OS):	Deliver	packets	to	appropriate	socket	(based	on	port)	

• Applications:		
• Send	and	receive	packets	
• Understand	content	of	packet	bodies

Separation	of	concerns

Secret	of	the	Internet’s	success	is	getting	

these	and	other	abstractions	right



• Application	opens	a	socket	that	allows	it	to	connect	to	the	network	stack	

• Maps	name	of	the	web	site	to	its	address	using	DNS	

• The	network	stack	at	the	source	embeds	the	address	and	port	for	both	
the	source	and	the	destination	in	packet	header	

• Each	router	constructs	a	routing	table	using	a	distributed	algorithm	

• Each	router	uses	destination	address	in	the	packet	header	to	look	up	the	
outgoing	link	in	the	routing	table	

• And	when	the	link	is	free,	forwards	the	packet		

• When	a	packet	arrives	the	destination:		

• The	network	stack	at	the	destination	uses	the	port	to	forward	the	
packet	to	the	right	application

The	end-to-end	story



• The	Internet	is	a	huge,	complicated	system	

• One	can	study	the	parts	in	isolation	
• Forwarding	
• Routing	
• Reliability	
• Ports,	sockets	
• Network	stack	
• …	

• But	the	pieces	all	fit	together	in	a	particular	way	

• Today	was	quick	overview	of	how	pieces	fit…	
• Don’t	worry	if	you	didn’t	understand	much	of	it	

• You	probably	absorbed	more	than	you	realize

Today’s	lecture




