CS4450

Computer Networks:
Architecture and Protocols

Lecture 21
TCP and Congestion Control

Rachit Agarwal

Recap: WHYs behind TCP design

e Started from first principles
e Correctness condition for reliable transport

e ... to understanding why feedback from receiver is necessary (sol-v1)
e ... to understanding why timers may be needed (sol-v2)
e ... to understanding why window-based design may be needed (sol-v3)

* ... to understanding why cumulative ACKs may be a good idea
e Very close to modern TCP

Recap: Transport layer

* Transport layer offer a “pipe” abstraction to applications
e Data goes in one end of the pipe and emerges from other

* Pipes are between processes, not hosts

* Two basic pipe abstractions:
* Unreliable packet delivery (UDP)

* Unreliable (application responsible for resending)
* Messages limited to single packet

* Reliable byte stream delivery
* Bytes inserted into pipe by sender

* They emerge, in order at receiver (to the app)

Recap: Transmission Control Protocol (TCP)

* Reliable, in-order delivery
* Ensures byte stream (eventually) arrives intact

* In the presence of corruption, delays, reordering, loss

e Connection oriented

* Explicit set-up and tear-down of TCP session

* Full duplex stream of byte service
* Sends and receives stream of bytes

 Flow control

* Ensures the sender does not overwhelm the receiver

* Congestion control

* Dynamic adaptation to network path’s capacity

Any Questions?

From design to implementation: major notation change

* Previously we focused on packets
 Packets had numbers
 ACKs referred to those numbers

 Window sizes expressed in terms of # of packets

* TCP focuses on bytes, thus
* Packets identified by the bytes they carry
* ACKs refer to the bytes received
* Window size expressed in terms of # of bytes

Basic Components of TCP

* Segments, Sequence numbers, ACKs
* TCP uses byte sequence numbers to identify payloads
* ACKs referred to sequence numbers

 Window sizes expressed in terms of # of bytes

e Retransmissions

* Can’t be correct without retransmitting lost/corrupted data
* TCP retransmits based on timeouts and duplicate ACKs

 Timeouts based on estimate of RTT

* Flow Control

* Congestion Control

Segments, Sequence Numbers and ACKs

TCP “Stream of Bytes” Service

Application @ Host A

W w|w|o| E
‘ﬁ‘ﬁ‘ﬁ‘ﬁ =+
@
o|o|D|D
ol=|md|w 8
...........

...........
w|o|w|wm|... A&
<TIKIK I —
~ |~ | —~] — CD
olo|jo|@], o
—
o N W o
...........

Application @ Host B

TCP “Stream of Bytes” Service

Application @ Host A

<«—— ¢ aig
<«— ¢ a1ig
«——| 08 9a1Ag

0|
=
DD
([@N Y

Segment sent when
TCP Data 1) Segment full (Max Segment Size)

\ 2) Not full, but times out

TCP Data
N

Application @ Host B

TCP Segment

TCP data (segment) |TCP Hdr

* [P Packet
* No bigger than Maximum Transmission Unit (MTU)
* E.g., up to 1500 bytes with Ethernet

* TCP Packet
 |P packet with a TCP header and data inside
* TCP header >= 20 bytes long

* TCP Segment
* No more than MSS (Maximum Segment Size) bytes

* E.g., up to 1460 consecutive bytes from the stream
 MSS = MTU - IP header - TCP header

Sequence Numbers

Initial Sequence Number (ISN)
K bytes
>

<

TC
Sequence number TCP Data HdI:‘
= 1st byte in segment
= ISN + k

ACK Sequence number
= next expected byte

[TCP Data = segno + length(data)

Ly

Host B

ACKing and Sequence Numbers

* Sender sends segments (byte stream)
e Data starts with Initial Sequence Number (ISN): X
* Packet contains B bytes
e X, X+1, X+2, ..., X+B-1

* Upon receipt of a segment, receiver sends an ACK
* If all data prior to X already received:
* ACK acknowledges X+B (because that is next expected byte)
* If highest contiguous byte received is smaller value Y
* ACK acknowledges Y+1
* Even if this has been ACKed before

TCP Header

Source Port Destination Port

Sequence Number

Starting byte offset
of data carried in
this segment

Acknowledgement

n Flags Advertised Window

Checksum Urgent Pointer

Options (variable)

TCP Header

Acknowledgement
gives sequence
number just
beyond highest
sequence number
received in order
(“What byte is
next”)

Source Port

Sequence Number

Destination Port

Checksum

Acknowledgement

Flags

Options (variable)

Advertised Window

Urgent Pointer

TCP Connection Establishment

and Initial Sequence Numbers

Initial Sequence Number (ISN)

* Sequence number for the very first byte
e E.g., Why not just use ISN =0?

* Practical issue
* |P addresses and port #s uniquely identify a connection
* Eventually, though, these port #s do get used again
* ... small chance an old packet is still in flight

 TCP therefore requires changing ISN
* Set from 32-bit clock that ticks every 4 microseconds

* ... only wraps around once every 4.55 hours

* To establish a connection, hosts exchange ISNs
* How does this help?

Establishing a TCP Connection

Each host tells its ISN to
the other host.

Data

Dal‘a

>
9
S \% o
X
=Yy 3> <
@ <
=
o

 Three-way handshake to establish connection

ost A sends a SYN (open; “synchronize sequence numbers”) to host B
ost B returns a SYN acknowledgement (SYN ACK)
ost sends an ACK to acknowledge the SYN ACK

TCP Header

Source Port Destination Port

FslaYgl\Sl ' Sequence Number

ACK

FIN Acknowledgement

RST —

PSH m Advertised Window
URG :

Checksum Urgent Pointer

Options (variable)

See /usr/include/netinet/tcp.h on Unix Systems

Step 1: A’s Initial SYN Packet

@ A’s Initial Sequence Number

A
FIN (Irrelevant since ACK not set)
RST —
PSH 20B m Advertised Window
URG :

Checksum Urgent Pointer

A tells B it wants to open a connection...

Step 2: B’s SYN-ACK Packet

B tells A it accepts and is ready to hear the next byte...

... upon receiving this packet, A can start sending data

Step 3: A’s ACK of the SYN-ACK

A’s Initial Sequence Number

FIN ACK = B’s ISN plus 1

PSH Advertised Window

Urgent Pointer

A tells B it’s likewise okay to start sending

... upon receiving this packet, B can start sending data

Timing Diagram: 3-Way Handshaking

Active Open Passive Open
Client (initiator) Server
listen()

connect(

accept()

Any Questions?

TCP Retransmission

Two Mechanisms for Retransmissions

* Duplicate ACKs

e Timeouts

Loss with Cumulative ACKs

* Sender sends packets with 100B and segnos
« 100, 200, 300, 400, 500, 600, 700, 800, 900

* Assume 5th packet (seqno 500) is lost, but no others

e Stream of ACKs will be
e 200, 300, 400, 500, 500, 500, 500, 500

Loss with Cumulative ACKs

* Duplicate ACKs are a sign of an isolated loss
* The lack of ACK progress means 500 hasn’t been delivered

e Stream of ACKs means some packets are being delivered

* Therefore, could trigger resend upon receiving k duplicate ACKs
e TCPusesk=3

* We will revisit this in congestion control

Timeouts and Retransmissions

* Reliability requires retransmitting lost data

* Involves setting timers and retransmitting on timeouts
* TCP only has a single timer

* TCP resets timer whenever new data is ACKed

* Retx packet containing “next byte” when timer expires

 RTO (Retransmit Time Out) is the basic timeout value

Setting the Timeout Value (RTO)

s o]
Timeoutg

RTT

v

Timeout too long -> inefficient Timeout too short -> duplicate packets

Setting RTO value

* Many ideas
* See backup slides for some examples (not needed for exams)

* Implementations often use a coarser-grained timer

* 500 msec is typical
* Incurring a timeout is expensive

* So we rely on duplicate ACKs

TCP Flow Control

Flow Control (Sliding Window)

e Advertised Window: W
 Can send W bytes beyond the next expected byte

* Receiver uses W to prevent sender from overflowing buffer

* Limits number of bytes sender can have in flight

TCP Header

Source Port Destination Port

Sequence Number

Acknowledgement

n Advertised Window

Checksum Urgent Pointer

Options (variable)

Implementing Sliding Window

* Sender maintains a window
e Data that has been sent out but not yet ACK’ed

e Left edge of window:

* Beginning of unacknowledged data
* Moves when data is ACKed

 Window size = maximum amount of data in flight

* Receiver sets this amount, based on its available buffer space

* If it has not yet sent data up to the app, this might be small

Advertised Window Limits Rate

* Sender can send no faster than W/RTT bytes/sec

 In original TCP, that was the sole protocol mechanism controlling

sender’s rate
* What’s missing?

* Congestion control about how to adjust W to avoid network congestion

Any Questions?

TCP Congestion Control

TCP congestion control: high-level idea

* End hosts adjust sending rate

e Based on implicit feedback from the network

* Implicit: router drops packets because its buffer overflows, not
pecause it’s trying to send message

* Hosts probe network to test level of congestion
e Speed up when no congestion (i.e., no packet drops)

e Slow down when when congestion (i.e., packet drops)

* How to do this efficiently?
* Extend TCP’s existing window-based protocol...

* Adapt the window size based in response to congestion

All These Windows...

* Flow control window: Advertised Window (RWND)
 How many bytes can be sent without overflowing receivers buffers
* Determined by the receiver and reported to the sender

* Congestion Window (CWND)
* How many bytes can be sent without overflowing routers

 Computed by the sender using congestion control algorithm

* Sender-side window = minimum{CWND,RWND}
e Assume for this lecture that RWND >> CWND

Note

* This lecture will talk about CWND in units of MSS
e Recall MSS: Maximum Segment Size, the amount of payload data

in a TCP packet

* This is only for pedagogical purposes

* Keep in mind that real implementations maintain CWND in bytes

Basics of TCP Congestion

e Congestion Window (CWND)

 Maximum # of unacknowledged bytes to have in flight
* Rate “"CWND/RTT

* Adapting the congestion window

* Increase upon lack of congestion: optimistic exploration
* Decrease upon detecting congestion

e But how do you detect congestion?

Not All Losses the Same

* Duplicate ACKs: isolated loss
e Still getting ACKs

* Timeout: possible disaster
* Not enough duplicate ACKs
* Must have suffered several losses

How to Adjust CWND?

* Consequences of over-sized window much worse than having an under-
sized window
* Over-sized window: packets dropped and retransmitted

 Under-sized window: somewhat lower throughput

* Approach
* Gentle increase when un-congested (exploration)
* Rapid decrease when congested

Additive Increase, Multiplicative Decrease (AIMD)

* Additive increase
* On success of last window of data, increase by one MSS
* If W packets in a row have been ACKed, increase W by one
* j.e., +1/W per ACK

* Multiplicative decrease
* On loss of packets by DupACKs, divide congestion window by half
» Special case: when timeout, reduce congestion window to one MSS

AIMD

* ACK: CWND -> CWND + 1/CWND
* When CWND is measured in MSS
* Note: after a full window, CWND increase by 1 MSS
* Thus, CWND increases by 1 MSS per RTT

* 3rd DupACK: CWND -> CWND/2

e Special case of timeout: CWND -> 1 MSS

Leads to the TCP Sawtooth

Window
A

Loss

Halved

Any Questions?

Slow Start

AIMD Starts Too Slowly

Window
A

Need to start with a small CWND to avoid overloading the network

Bandwidth Discovery with Slow Start

* Goal: estimate available bandwidth
 Start slow (for safety)
e But ramp up quickly (for efficiency)

* Consider
e RTT = 100ms, MSS=1000bytes
* Window size to fill 1Mbps of BW =12.5 MSS
 Window size to fill 1 Gbps = 12,500 MSS
* With just AIMD, it takes about 12500 RTTs to get to this
window size!

e ~¥21 mins

“Slow Start” Phase

 Start with a small congestion window
e Initially, CWND is 1 MSS

* So, initial sending rate is MSS/RTT

* That could be pretty wasteful
* Might be much less than the actual bandwidth

* Linear increase takes a long time to accelerate

* Slow-start phase (actually “fast start”)
* Sender starts at a slow rate (hence the name)

* ... but increases exponentially until first loss

Slow Start in Action

Double CWND per round-trip time

Simple implementation: on each ACK, CWND += MSS

Src

Slow Start and the TCP Sawtooth

Window
A

Why is it called slow-start? Because TCP originally had no congestion control
mechanism. The source would just start by sending a whole window’s worth of data.

Slow-Start vs AIMD

* When does a sender stop Slow-Start and start Additive Increase?

* Introduce a “slow start threshold” (ssthresh)
* Initialized to a large value
* On timeout, ssthresh = CWND/2

* When CWND > ssthresh, sender switches from slow-start to AIMD-style

Increase

Timeouts

Loss Detected by Timeout

e Sender starts a timer that runs for RTO seconds
 Restart timer whenever ACK for new data arrives

* If timer expires
e Set SSHTHRESH <- CWND/2 (“Slow Start Threshold”)
* Set CWND <- 1 (MSS)
* Retransmit first lost packet
* Execute Slow Start until CWND > SSTHRESH
* After which switch to Additive Increase

Summary of Increase

e “Slow start”: increase CWND by 1 (MSS) for each ACK
o A factor of 2 per RTT

* Leave slow-start regime when either:
* CWND > SSTHRESH
* Packet drop detected by dupacks

* Enter AIMD regime
* Increase by 1 (MSS) for each window’s worth of ACKed data

Summary of Decrease

* Cut CWND half on loss detected by dupacks
* Fast retransmit to avoid overreacting

e Cut CWND all the way to 1 (MSS) on timeout
* Set ssthresh to CWND/2

* Never drop CWND below 1 (MSS)
* Our correctness condition: always try to make progress

TCP Congestion Control Details

Implementation

 State at sender
* CWND (initialized to a small constant)
 ssthresh (initialized to a large constant)
* dupACKcount

 Timer, as before

 Events at sender
 ACK (new data)

 dupACK (duplicate ACK for old data)
* Timeout

 What about receiver? Just send ACKs upon arrival

Event: ACK (new data)

e If in slow start
. _ CWND packets per RTT
CWND +=1 Hence after one RTT with
no drops:

CWND =2 x CWND

Event: ACK (new data)

e If CWND <= ssthresh

e Else

 CWND +=1

* CWND =CWND + 1/CWND

Slow Start Phase

Congestion Avoidance Phase
(additive increase)

CWND packets per RTT
Hence after one RTT with

no drops:
CWND = CWND + 1

Event: Timeout

* On Timeout
e ssthresh <- CWND/?2
* CWND<«-1

Event: dupACK

* dupACKcount++

e |f dupACKcount =3 /* fast retransmit */
e ssthresh <- CWND/?2
e CWND <- CWND/2

Remains in congestion
avoidance after fast
retransmission

Time Diagram

Window
A

Fast Retransmission Timeout SSThresh

/ Set to here

Slow-start restart: Go back to CWND of 1 MSS, but take
advantage of knowing the previous value of CWND.

TCP Flavors

 TCP Tahoe
* CWND =1 on triple dupACK

* TCP Reno
* CWND =1 on timeout
* CWND = CWND/2 on triple dupACK

Our default assumption

* TCP-newReno
 TCP-Reno + improved fast recovery

* TCP-SACK

* Incorporates selective acknowledgements

Done!

Next lecture: Critical Analysis of TCP

TCP Back up slides

Could Base RTO on RTT Estimation

* Use exponential averaging if RTT samples

SampleRTT = AckRcvdTime - SendPktTime
EstimatedRTT = o x EstimatedRTT + (1-a) x SampledRTT

O<a<=1
:A SampleRTT
Eé NI
‘5 —rd ‘\ \:T ~~~~~~~ -
s // “ \\\\
0‘: _h \| ~
7o) 1
] T

T >

Time

Exponential Averaging Example

EstimatedRTT = o x EstimatedRTT + (1-0) x SampledRTT
(Assume RTT is constant => SampleRTT = RTT)

EstimatedRTT (0.= 0.5)
RTT

012 3456778 9 time

Exponential Averaging in Action

Set Timeout Estimate (ETO) = 2 x EstimatedRTT

Figure 5: Performance of an RFC793 retransmit timer

— | | | | | | | |
0 10 20 30 40 50 60 70 80 g0 100 110

From Jacobson and Karels, SIGCOMM 1988

Jacobson/Karels Algorithm

* Problem: need to better capture variability in RTT
* Directly measure deviation

* Deviation = | SampleRTT - EstimatedRTT|
* Estimated Deviation: exponential average of Deviation

e ETO = EstimatedRTT + 4 x EstimatedDeviation

With Jacobson/Karels

Figure 6: Performance of a Mean+Variance retransmit timer

o~
-

10
|

Problem: Ambiguous Measurements

* How do we differentiate between the real ACK, and ACK of the
retransmitted packet?

Sampled

RTT RTT

TCP Timers

* Two important quantities
e RTO: value you set timer to for timeouts
* ETO: current estimate of appropriate “raw” timeout

* Use exponential averaging to estimate
e RTT
* Deviation = | Estimated RTT - Sample RTT |

e ETO = Estimated RTT + 4 x Estimated Deviation

Use Only “Clean” Samples for ETO

* Only update ETO when you get a clean sample

 Where clean means ACK includes no retransmitted segments

Example

* Send 100, 200, 300
* 100 means packet whose first byte is 100, last byte is 199

 Receive A200

 A200 means bytes up to 199 rep’d, expecting 200 next
e Clean sample

e 200 times out, resend 200, receive A300
* No clean samples

* Send 400, 500, receive A600
* Clean samples

Setting RTO

* Every time RTO timer expires, set RTO <- 2.RTO
e Upto maximum >= 60 sec

* Every time clean sample arrives set RTO to ETO

Example

* First arriving ACK expects 100 (adv. window=500)
* Initialize ETP; RTO = ETO
e Restart timer for RTO seconds (new data ACK’ed)

* Remember TCP only has one timer, not timer per packet
* Send packets 100, 200, 300, 400 and 500

* Arriving ACK expects 300 (A300)
 Update ETO; RTO = ETO

e Restart timer for RTO seconds (new data ACKed)
* Send packets 600, 700

* Arriving ACK expects 300 (A300)

Example (cont’d)

* Timer goes off

« RTO = 2*RTO (back off timer)

e Restart timer for RTO seconds (it had expired)
* Resend packet 300

* Arriving ACK expects 800
* Don’t update ETO (ACK includes a retransmission)
e Restart timer for RTO seconds (new data ACKed)
* Send packets 800, 900, 1000, 1100, 1200

Example (cont’d)

* Arriving ACK expects 1000
 Updates ETO; RTO = ETO
e Restart timer for RTO seconds (new data ACKed)
* Send packets 1300, 1400

e ... Connection continues...

Example

* Consider a TCP connection with:
* CWND = 10 packets
e Last ACK was for packet # 101

* j.e., receiver expecting next packet to have seq no 101

e 10 packets [101, 102, 103, ..., 110] are in flight
* Packet 101 is dropped
« What ACKs do they generate?
* And how does the sender respond?

Timeline

 ACK 101(due to 102) CWND = 10 dupAC
 ACK 101(due to 103) CWND = 10 dupAC
 ACK 101(due to 104) CWND = 10 dupAC
* RETRANSMIT 101 ssthresh =5 CWND =5
 ACK 101 (due to 105) CWND=5 (no xmit)
 ACK 101 (due to 106) CWND=5 (no xmit)
e ACK 101 (due to 107) CWND=5 (no X,

* ACK 101 (due to 108) CWN
e ACK 101 (due to 109) CWN
e ACK 101 (due to 110) CWN

K#1 (no xmit)
K#2 (no xmit)

K #3 (no xmit)

D=5 (no xmit) Note that you do not
D=5 (no xmit) restart dupACKcounter

on same packet!

D=5 (no xmit)

e ACK 111 (due to 101)<- only now can we transmit new packets

* Plus no packets in flight so no ACKs for another RTT

Solution: Fast Recovery

* |dea: Grant the sender temporary “credit” for each dupACK so as to
keep packets in flight (each ACK due to arriving pkt)

* If dupACKcount =3
e ssthresh =CWND /2
e CWND = ssthresh + 3

 While in fast recovery
« CWND = CWND + 1 for each additional duplicate pet

* Exit fast recovery after receiving new ACK
* Set CWND = ssthresh (which had been set to CWND/2 after loss)

Example

* Consider a TCP connection with:
* CWND = 10 packets
e Last ACK was for packet # 101

* j.e., receiver expecting next packet to have seq no 101

e 10 packets [101, 102, 103, ..., 110] are in flight
* Packet 101 is dropped

Timeline

 ACK 101(due to 102) CWND = 10 dupACK #1 (no xmit)

 ACK 101(due to 103) CWND = 10 dupACK #2 (no xmit)

 ACK 101(due to 104) CWND = 10 dupACK #3 (no xmit)

e RETRANSMIT 101 ssthresh =5 CWND =8 (5 + 3)

 ACK 101 (due to 105) CWND=9 (no xmit)

 ACK 101 (due to 106) CWND=10 (no xmit)

 ACK 101 (due to 107) CWND=11 (xmit 111)

* ACK 101 (due to 108) CWND=12 (xmit 112)

 ACK 101 (due to 109) CWND=13 (xmit 113)

 ACK 101 (due to 110) CWND=14 (xmit 114)

e ACK 111 (due to 101) CWND =5 (xmit 115) <- exiting fast recovery
e Packets 111-114 already in flight (and not sending 115)

 ACK112 (due to 111) CWND =5 + 1/5 <- back to congestion avoidance

TCP “Phases”

e Slow-start
e Enter on timeout
* Leave when CWND > ssthresh (to Cong. Avoid.)

* The > only applies here...

* Congestion Avoidance

e Leave when timeout

* Fast recovery
* Enter when dupACK=3

e Leave when New ACK or Timeout

TCP State Machine

dupACK imeout
O new ACK
’7 CWND > ssthresh ,7
slow start < - congestn.
(/ Timeout Wl
U dupACK
ACK
new AC | new ACK
Timeout

dupACK=3 dupACK=3

fast
recovery

dupACK (/

TCP State Machine
dupACK Timeout

O new ACK
’7 CWND > ssthresh ,7

slow start < - congestn.
C/ Timeout avoid.
U dupACK
new ACK new ACK

dupACK=3 dupACK=3

fast
recovery

dupACK (/

TCP State Machine
dupACK Timeout

O new ACK
»7 CWND > ssthresh ,7

slow start _ - congestn.
Timeout SAOlleE
b U dupACK
new ACK new ACK

dupACK=3 dupACK=3

fast
recovery

dupACK b

