## CS4450 Problem Set #2

### 1 CSMA/CD: Random Access

Let A and B be two stations attempting to transmit on an Ethernet. Each has a steady queue of frames ready to send; A's frames are denoted  $A_1, A_2, ...,$  and B's are defined similarly.

Recall the random access protocol discussed in class. In case of a collision, A and B back off for  $d \times T$  time where T is the back off unit time and  $d \in D = \{0, ..., 2^k - 1\}$ , where k is the number of collisions so far. You can think of selecting a d from D as choosing a time slot to transmit the packet from  $2^k$  future slots.

Suppose A and B simultaneously attempt to send their first frame, collide, and happen to choose back off times of  $0 \times T$  and  $1 \times T$ , respectively, meaning A wins the race and transmits  $A_1$  while B waits.

- a) At the end of the first transmission, B will attempt to retransmit  $B_1$  while A will attempt to transmit  $A_2$ . These attempts will collide. Now A will choose a waiting time in  $\{0 \times T, 1 \times T\}$ , while B will choose a waiting time in  $\{0 \times T, ..., 3 \times T\}$ . What is the probability that A wins this second back off race?
- b) Suppose A wins the second back off race in (a). A transmits  $A_2$ , and when it is finished, A and B collide again as A tries to transmit  $A_3$  and B tries once more to transmit  $B_1$ . What is the probability that A wins this third back off race?
- **c)** Given that A wins the first three back off races, what is a lower bound for the probability that A wins all of the remaining back off races?
- d) In the case that (c) holds, what happens to the frame  $B_1$ ?

# 2 CSMA/CD: Random Access

Let A and B be two stations attempting to transmit a single packet on an Ethernet.

Recall that in case of the kth collision, A and B choose a  $d \in D = \{0, ..., 2^k - 1\}$  and wait for  $d \times T$  time. Here, d is chosen randomly from the set D, where the probability of selecting any element in D is distributed uniformly.

- a) Let  $P_k$  be the probability of success after the  $k^{th}$  collision in the  $(k+1)^{th}$  attempt. Write  $P_k$  in terms of k.
- **b)** Let  $S_k$  be the probability of success in (k+1) attempts given there is a collision to start with. Write  $S_k$  in terms of k.
- c) Let S be the probability of success after k collisions, at some point in the future. Calculate S.

Now, we will consider when the probability of selecting elements from D, i.e. selecting a time slot, is not distributed uniformly.

Specifically, let

$$D = \{0, 1, 2, ..., d_{2^k-1}\}$$
 and  $P = \{p, 2p, 3p, ..., 2^k p\}$ 

where p is the solution to

$$p + 2p + 3p + \dots + 2^k p = 1.$$

Let  $p_i$ , the  $i^{th}$  element of P, be the probability of choosing  $d_i$ , the  $i^{th}$  element of D. Let  $P_k$  and  $S_k$  be defined as before.

- d) Given the probability distribution above, calculate the probability of success in the second attempt, i.e.  $P_1$ .
- e) Calculate the probability of success in the third attempt, i.e.  $P_2$ . Calculate  $S_2$ .
- **f)** Write  $P_k$  and  $S_k$  in terms of k.

Now, assume there are 3 stations, A, B & C, and a uniform probability distribution in choosing slots.

**g)** Can we use the same method as we used in (a) & (b) to calculate  $P_k$  and  $Q_k$ ? Why/why not?

## 3 The Spanning Tree Algorithm



Above an extended LAN and its corresponding network graph is given.

- a) Which ports are selected by the spanning tree algorithm?
- b) Assume that the bridge B1 fails. Which ports are selected by the spanning tree algorithm after the recovery process and a new tree has been formed?

#### 4 Programming

Suppose N stations are waiting for another packet to finish on an Ethernet. All transmit at once when the packet is finished and collide.

Write a program to implement the simulation of this case up until the point when one of the N waiting stations succeeds. Model time as an integer, T, in units of slot times and treat collisions as taking one slot time (e.g. a collision at time T followed by a backoff of k = 0 should result in a retransmission attempt at time T + 1).

- a) Find the average delay before one station transmits successfully, for N=5, N=10, N=20, N=40, and N=100.
- **b)** Plot the average delay against the number of stations. How is delay related to the number of stations?