Building OWL Ontologies with Protégé (2)

CS 431 — April 14, 2008
Carl Lagoze — Cornell University

MANCHESTER
1824

ty
er

The Universi
of Manchest

a
¥
COOHIF BT wa
E3F1E R s
Drograime
'L =
o
e i
- L |
i i
k L

Parts extracted with permission from:

A Practical Introduction to
Ontologies & OWL

Session 1: Primitive Classes in OWL

Nick Drummond & Matthew Horridge

MANCHESTER

Yy
er

Parts extracted with permission from:

The Universit
of Manchest

A Practical Introduction to
Ontologies & OWL

!
BERY
B (0
= ugs 4
Xt 3
s | &

Session 2: Defined Classes and Additional
Modelling Constructs in OWL

™

.‘f-; -
'y
SR, sl
tégé

Nick Drummond & Matthew Horridge

Restrictions

* We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

necessary
at least one

Every at least one

Why? Necessary conditions

* We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

o—

superclass

d hasBase PizzaBase
all

Consistency Checking

Create a class that doesn’t really make sense
— What is a MeatyVegetableTopping?

We’d like to be able to check the logical consistency of
our model

This is one of the tasks that can be done automatically
by software known as a Reasoner

Being able to use a reasoner is one of the main
advantages of using a logic-based formalism such as
OWL (and why we are using OWL-DL)

We will use Pellet (server-based DIG reasoner)

Accessing the Reasoner

K pizzas2_7g8
Edt Pre

(CI)) OWLClas

For Project: 4

Asserted Hierarchy
.S) owl: Thing

(©) cajunPizza
©) MargheritaPizza

(©) VegetarianPizza2

rdfs:comment

[Asserted | Inferred

Asserted Conditions

DomainConcept
hasTopping PizzaTopping

~samples\pizzas2_7.pprj, OWL Files)

[Annotations
Property

Connected to Racer 1.7.23

Finished: Classification complete

PizzaTopping

v

Logic View () Properties View

Reasoning about our Pizzas

When we classify an ontology we could just use the “Check Consistency”
button but we’ll get into the habit of doing a full classification as we’ll be
doing this later

The reasoner dialog will pop up while the
reasoner works

When the reasoner has finished, you will see an inferred hierarchy
appear, which will show any movement of classes in the hierarchy

If the reasoner has inferred anything about our model, this is reported in
the reasoner dialog and in a separate results window

inconsistent classes turn
moved classes turn

Primitive Classes

* Primitive Class = only Necessary Conditions

* Can not yet judge an individual based on primitive
classes —why?

=
disjoint tree

Defined Classes

 We want to be able to definitively type some
thing
— E.g., “l know it’s a Cheesy Pizza because it has
cheese on it”

* Note that this is different from “A Cheesy Pizza must
have cheese on it”

Creating a CheeseyPizza

So, we create a CheesyPizza Class (do not make it disjoint)

and add a restriction:
“Every CheeseyPizza must have at least one CheeseTopping”

Classifying shows that we currently don’t have enough
information to do any classification

| Asserted | Inferred

Asserted Conditions
NECESSARY & SUFFICIENT
@ Pizza
£) 3 hasTopping CheeseTopping IEI
NECESSARY
INHERITED

3 hasBase PizzaBase [from Pizza]

Reasoner Classification

* The reasoner has been able to infer that anything that is a Pizza that
has at least one topping from CheeseTopping is a CheeseyPizza

: SUBCLASS RELATIONSHIP

For Project @ pizza

Inferred Hierarchy
owl:Thing
v) DomainConcept
) Courtry
. lceCream
v O Pizza
v e CheeseyPizza
@ American
) AmericanHot
O cajun
@ capricciosa

Why?
Necessary & Sufficient Conditions

» Each set of necessary & sufficient conditions is an Equivalent Class

©

o

1%

equivalent to

subsumed

Defined Classes

 We've created a Defined Class, CheeseyPizza

It has a definition. That is at least one Necessary and Sufficient condition

Classes, all of whose individuals satisfy this definition, can be inferred to be
subclasses
Therefore, we can use it like a query to “collect” subclasses that satisfy its conditions

Reasoners can be used to organise the complexity of our hierarchy

* It’s marked with an equivalence symbol in the interface

Polyhierarchies

Note that just because a Pizza is a CheesyPizza it can be
another type of Pizza

Take a look at InterestingPizza

We need to be able to give them multiple parentsin a

principled way
We could just assert multiple parents

Asserted Polyhierarchies

In most cases asserting polyhierarchies is bad

Why is this class a subclass of that one?

Adding new classes becomes difficult because all subclasses may
need to be updated

Extracting from a graph is harder than from a tree

®__ e
s
()

Untangling

v l@l Pizza
v @) CheeseAndMeatPizzal
v l@ CheeseyPizza
(C) CajunPizza
b (C) CheeseAndMeatPizza2
MargheritaPizza can be found under both (C) MargheritaPizza

NamedPizza and CheeseyPizza in the \E)MushroomPizza

A . > '@ MeatyPizza
inferred hierarch
y © CheeseAndMeatPizza3

> l@ InterestingPizza
v '@ NamedPizza
'@ American
@) CajunPizza
l@ MargheritaPizza
'@ MushroomPizza

* We can see that certain Pizzas are now
classified under multiple parents

Mission Successful!

Untangling

« However, our unclassified version of the
ontology is a simple tree, which is much easier
to maintain

* We’'ve now got a polyhierarchy without
asserting multiple superclass relationships

* Plus, we also know why certain pizzas have
been classified as CheeseyPizzas

Untangling

* We don’t currently have many kinds of
primitive pizza but its easy to see that if we
had, it would have been a substantial task to
assert CheeseyPizza as a parent of lots, if not
all, of them

 And then do it all over again for other defined
classes like MeatyPizza or whatever

Viewing polyhierarchies

o AS We n OW h ave .FOI Project @ pizzas2_3'

multiple P

. . ¥ (C)DomainConcept

inheritance, the v ©pizza

i}] v © MeatyPizza

tree view IS IeSS \E)ChickenPizza
I 'E!' NamedPizza

t h an h e I pfu I i N '_?' Realltalia‘nPiz‘za
- | C)VegetarianPizza

viewing our & -Liowll
uh ie rarc hy”

pizzas2_7 Protégé 3.0 beta

File Edit Project OWL Wizards Tools Code

DeB +

[TabWidgets | Options

T

vl
v
vl
[v
vl
O
O

4

OWLClsesTab
OWLPropertiesTah
FormsTab
OWLIndividualsTal
OWLMetadataTab
ClsesAndinstancesTab

ClsesTab

IKAToolTab
OWLVizTab

RDQOLTab

SlotsTab

Viewing our Hierarchy Graphically

(file:\C:\Nick\Words\Tutorials\internalTraining-2004\0WLTutorial2Package\examples\pizzas2_7.pprj, OWL Files)

Window Help

ClER S

E]]] Properties

Pizza (instance of owl.Class)

Property

Tah Widget

|E[[]Plopemes
v @hasTopping (muttiple Pi
PizzaTopping

C) PizzaBase

pping)

Properties View

o, OWLYiZ

ct OWL Wizards Tools
fﬁ' Archive Current Version

N . .
% Revertto a Previous Version

=rics...

Encodings...

OWW1Viz Tab

| o O’W‘I.Cksses I M Propeds | " @ Metadata I .ﬂ. OWLYiz
% Qe : | & [vz

@ o‘ v O B : @
|‘ Asserted hxdel I Inferr

CLASS BROWSER

For Project @ pizza

Asserted Hierarchy

owl:Thing
v) DomainConcept
© Country

daTopping

eseTopping

AncherisaTopsing ~ &~
B ChesseTopping _r}—————(PamesanTopping

MixcaSeatooaTopping
s FourCheesesTopping

C PrawnaTopeing -
NMazzarcllaToppirg

CrickenTopping

“McatTopping it HorSpiceaBestTopping
<

ThinAncCispyBase PeporoniSausageTopping

HamTopeing yt—

Pizza -i;" e . @m)
N oy = B el

e 7 ar
Spinest)< vex) = Cgimrz Y

2
i (Namoceizza it

Using OWLViz to untangle

The asserted hierarchy should, ideally, be a
tidy tree of disjoint primitives

The inferred hierarchy will be tangled

By switching from the asserted to the inferred

hierarchy, it is easy to see the changes made
by the reasoner

OWLViz can be used to spot tangles in the

primitive tree and also disjoints (including
inherited ones) are marked (with a -)

Universal Restriction

Universal Restrictions

* “RealltalianPizzas only have bases that are

ThinAndCrispy”

* A Universal Restriction is
added just like an
Existential one, but the
restriction type is different

OWLRestriction

£/ allValuesFrom
9 someValuesFrom
€ hasValue

© cardinality

3 minCardinality

3 maxCardinality

What does this mean?

Y hasBase ThinAndCrispy
necessary condition

necessary
only have

What does this mean?

Y hasBase ThinAndCrispy
necessary condition

No individual
other than

Warning: Trivial Satisfaction

had not d hasBase PizzaBase

S

necessary

only have a
or no hasBase relationship at all

» Universal Restrictions by themselves do not state “at least one”

Extending universal restrictions with
union classes and covering axioms

Define a Vegetarian Pizza

To be able to define a vegetarian pizza as
a Pizza with only Vegetarian Toppings

we need:

1. To be able to say “only”
This requires a Universal Restriction

2. To be able to create a vegetarian topping
This requires a Union Class

Union Classes
ka “disjunction”
nis OR That OR TheOther
nis L Thattd TheOther

u

» Covering axioms

» Closure

Covering Axioms

 Covering axiom — a union expression containing several covering
classes

A covering axiom in the Necessary & Sufficient Conditions of a class
means:

the class cannot contain any instances other than those from the
covering classes

Without a covering axiom With a covering axiom
(B and C are subclasses of A) (B and C are subclasses of &
and Mg a subclass of B union C)

VegetarianPizza Classification

How come a Margherita pizza is not classified under VegetarianPizza

Actually, there is nothing wrong with our definition of VegetarianPizza
It is actually the description of Margherita that is incomplete

The reasoner has not got enough information to infer that Margherita is
subsumed by VegetarianPizza. Why?

This is because OWL makes the Open World Assumption

Open World Assumption

In a closed world (like DBs), the information we have is everything

In an open world, we assume there is always more information than is
stated

Where a database, for example, returns a negative if it cannot find some
data, the reasoner makes no assumption about the completeness of the

information it is given

The reasoner cannot determine something does not hold unless it is
explicitly stated in the model

Open World Assumption

Typically we have a pattern of several Existential
restrictions on a single property with different
fillers — like primitive pizzas on hasTopping

Existential restrictions should be paraphrased by
“amongst other things...”

Must state that a description is complete
We need closure for the given property

Closing the Open World
Closure

 Thisis in the form of a Universal Restriction
with a filler that is the Union of the other
fillers for that property

Closure example: MargheritaPizza

All MargheritaPizzas must have:

at least 1 topping from MozzarellaTopping and
at least 1 topping from TomatoTopping and
only toppings from MozzarellaTopping or TomatoTopping

| Asserted | Inferred |

Asserted Conditions
NECESSARY & SUFFICIENT
NECESSARY
) NamedPizza
! Y hasTopping (MozzarellaTopping 1 TomatoTopping)
&) 3 hasTopping MozzarellaTopping
&) 3 hasTopping TomatoTopping

The last part is paraphrased into “no other toppings”
The union closes the hasTopping property on MargheritaPizza

Cardinality Constraints
Interesting Pizza

Pizza
hasTopping min 3

hasBase some PizzaBase

