Building OWL Ontologies with Protege

CS 431 — April 9, 2008
Carl Lagoze — Cornell University

MANCHESTER
1824

ty
er

The Universi
of Manchest

a
¥
COOHIF BT wa
E3F1E R s
Drograime
'L =
o
e i
- L |
i i
k L

Parts extracted with permission from:

A Practical Introduction to
Ontologies & OWL

Session 1: Primitive Classes in OWL

Nick Drummond & Matthew Horridge

MANCHESTER

Yy
er

Parts extracted with permission from:

The Universit
of Manchest

A Practical Introduction to
Ontologies & OWL

!
BERY
B (0
= ugs 4
Xt 3
s | &

Session 2: Defined Classes and Additional
Modelling Constructs in OWL

™

.‘f-; -
'y
SR, sl
tégé

Nick Drummond & Matthew Horridge

Resources

* Protége -
— General open-source ontology modeling system with OWL plug-in
— Use the 3.4 beta
— Multiple plug-ins are available, download full

e Pellet -

— Open-source OWL DL reasoner
— Server-based (DIG protocol port 8081)
— Integrates with Protége-OWL

Resources (2)

e CO-ODE Resources -
— Protégé OWL Tutorial -

— Tutorial: A Practical Introduction to Ontologies &
OWL -

What is an

A formal specification of conceptualization
shared in a community

Vocabulary for defining a set of things that
exist in a world view

Formalization allows communication across
application systems and extension

Global vs.

Components of an Ontology

Vocabulary (concepts)

Structure (attributes of concepts and hierarchy)
Relationships between concepts

Logical characteristics of relationships
— Domain and range restrictions

— Properties of relations (symmetry, transitivity)
— Cardinality of relations
— etc.

Some guiding rules of ontology design

In most cases there are many ways to model a domain

Ontology development, like program development, is
by nature iterative

The ontology should closely correspond to the objects
(nouns) and relationships (verbs) in the sentences
describing your domain of interest

When building an ontology we need an application in
mind — ontologies should not be built for the sake of it

Keep the application in mind when creating concepts —
this should help you scope the project

Our Application

806

Pizza Finder

The Manchester Pizza Finder

v & Toppings
> 4 SpicyTopping
> & MeatTopping
v # DairyTopping
> & CheeseTopping
& EggTopping
> & VegetableTopping
> 4 SauceTopping
> & FruitTopping
> 4 NutTopping
> # HerbSpiceTopping
> 4 FishTopping

) ~Excluded toppings:

~Included toppings:

& DairyTopping

".Cet Pizzas)

Ontology Design is non-trivial

different viewpoints
— Tomato — Vegetable or Fruit?
— culinary vs biological

Ambiguity
— words not concepts

Missing Knowledge

— What is peperonata?
multiple classifications (2+ parents)
lots of missing categories (superclasses?)
competency questions

— What are we likely to want to “ask” our ontology?
— bear the application in mind

OWL Constructs:
Classes

Eg Mammal, Tree, Person, Building, Fluid, Company
Classes are sets of Individuals
aka “Type”, “Concept”, “Category”
Membership of a Class is dependent on its logical description, not its name

Classes do not have to be named — they can be logical expressions — eg
things that have color Blue

A Class should be described such that it is possible for it to contain
Individuals (unless the intention is to represent the empty class)

Classes that cannot possibly contain any Individuals are said to be
inconsistent

OWL Constructs: Properties

Eg hasPart, isinhabitedBy, isNextTo, occursBefore
* Properties are used to relate Individuals
* We often say that Individuals are related along a given
property
Relationships in OWL are binary:
Subject = predicate = Object
Individual a = hasProperty =2 Individual b

nick_drummond > givesTutorial 2 Manchester ProtegeOWL_tutorial_29 June 2005

OWL Constructs: Individuals

Eg me, you, this lecture, this room
* |Individuals are the objects in the domain
e aka “Instance”, “Object”

* Individuals may be (and are likely to be) a
member of multiple Classes

Components of OWL Ontologies:
Individuals

% England

% Italy
% USA

wO % Fluffy &

Matthe
% Fido

Unigue name assumption: Two individuals are not equivalent
(even if ids are different) unless explicitly stated so (open world)

Components of OWL Ontologies:
Properties among Individuals

England

&
Matthew ~—__hasSiblin 9_/10 Gemma

Components of OWL Ontologies: Classes,
Properties, and Individuals

*All individuals must be in a class
*Define sets of individuals

Protége-OWL

pizza Protégé 3.1 beta (file:\C:\Program%20Files\Apache%20Group\Apache2\htdocs\ontologies\pizza\2005\05\16\pizza.pprj, OWL ... Q@@

File Edt Project OWL Code Window Tools Help
DEE tEBE wmd &9 ECI-
[@ owLClasses "-Pmpenies I @ Individuals I @ Metadata |

For Class: @ GorgonzolaTopping (instance of owl:Class)

[Name | SameAs | DifferentFrom | [J) Annotations

owl: Thing Property
v . DomainConcept .
(=) Country rdfs:comment (en)
@ IceCream
v O Pizza
©) CheeseyPizza
© InterestingPizza
© MeatyPizza
@ NamedPizza
© NonVegetarianPizza [Asserted | Inferred M Properties ol LB & [
© RealtalianPizza n ¥ (= hasSpiciness (single Spicin
(=) SpicyPizza Asserted Conditions 9 Mild
© SpicyPizzaEquivalent [=] isToppingOf (multiple P
© VegetarianPizza @ CheeseTopping
© VegetarianPizzaEquivalent1 €) 3 hasSpiciness Mild
e VegetarianPizzaEquivalent2
» O PizzaBase
v @ PizzaTopping
v @ CheeseTopping
. CheeseyVegetableTopping
@ FourCheesesTopping
@ GoatsCheeseTopping @D Disjoints o @ % 2 &
& GorgonzolaTopping @ ParmesanTopping
@ WozzarellaTopping @ MozzarellaTopping
® ParmesanTopping (] FourCheesesTopping
v @ FishTopping @ GoatsCheeseTopping
@ AnchoviesTopping
® MixedSeafoodTopping

Logic View Properties View

lass Hierarchy

For Project: @ pizza

Asserted Hierarch

(file:\C:\Program%20Files\Apache%20Group\Apache2\htdocs\ontologies\pizza\2005\05\16\pizza.pprj, OWL [= |[E]
Window Tools Help

For Class: @ American (instance of owkClass)

[‘Name | SameAs | DifferentFrom | [Annotations
lameicn @

rdfs:comment (en) L

Americana

VegetarianPizzaEquival)
PizzaBase [Asserted | Inferred M Properties i ol L G [3
Fara

- ¥ EhasBase (single)
Asserted Conditions
PizzaBase

v | |||¥ EnasTopping (mutiple P
) ValuePartition @ Nemedpizza]) MozzarellaTopping L PeperoniSausage
L. € ¥ hasTopping (MozzarellaTopping L PeperoniSausageTopping U [€ |) MozzarellaTopping
Spiciness g 3 hasTopping MozzarellaTopping [c] ©) TomatoTopping
3 hasTopping TomatoTopping o)
PeperoniSausageToppin
(E) 3 hasTopping PeperoniSausageTopping © Pep LG

PizzaTopping

3 hasBase PizzaBase

roperties View

Subsumption

”

» Superclass/subclass relationship, “isa

* All members of a subclass can be inferred to be members of its
superclasses

\%
\%

Defined explicitly or inferred by
a reasoner

Disjointness

OWL assumes that classes overlap

both

this is not the case

Disjointness

If we state that classes are disjoint

©

OOO

cannot be both

explicitly

ClassesTab: Disjoints Widget

For Project: @ pizzas2_7

Asserted Hierarchy et e i [) Annotations

) Mutually betwween all siblings
) Only hetween this class and its siblings

@D visioints
O Pizza
() PizzaBase
) PizzaTopping

Restrictions

* We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

necessary
at least one

Every at least one

What does this mean?

* We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

/;\ Q

no individual
does not have at least one

Why?

* We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

o—

Why? Necessary conditions

* We have created a restriction: 3 hasBase PizzaBase
on Class Pizza as a necessary condition

o—

superclass

d hasBase PizzaBase
all

Consistency Checking

Create a class that doesn’t really make sense
— What is a MeatyVegetableTopping?

We’d like to be able to check the logical consistency of
our model

This is one of the tasks that can be done automatically
by software known as a Reasoner

Being able to use a reasoner is one of the main
advantages of using a logic-based formalism such as
OWL (and why we are using OWL-DL)

Reasoners

e Reasoners are used to infer information that is
not explicitly contained within the ontology

* You may also hear them being referred to as
Classifiers

 Standard reasoner services are:

— Consistency Checking
— Subsumption Checking
— Equivalence Checking
— Instantiation Checking

Reasoners and Protégé

Protége-OWL supports the use of reasoners implementing the
DIG interface

This means that the reasoner you choose is independent of
the ontology editor, so you can choose the implementation
you want depending on your needs (eg some may be more
optimised for speed/memory, others may have more features)

These reasoners typically set up a service running locally or on
a remote server — Protége-OWL can only connect to reasoners

over an http:// connection

We will use Pellet

Accessing the Reasoner

K pizzas2_7g8
Edt Pre

(CI)) OWLClas

For Project: 4

Asserted Hierarchy
.S) owl: Thing

(©) cajunPizza
©) MargheritaPizza

(©) VegetarianPizza2

rdfs:comment

[Asserted | Inferred

Asserted Conditions

DomainConcept
hasTopping PizzaTopping

~samples\pizzas2_7.pprj, OWL Files)

[Annotations
Property

Connected to Racer 1.7.23

Finished: Classification complete

PizzaTopping

v

Logic View () Properties View

Reasoning about our Pizzas

When we classify an ontology we could just use the “Check Consistency”
button but we’ll get into the habit of doing a full classification as we’ll be
doing this later

The reasoner dialog will pop up while the
reasoner works

When the reasoner has finished, you will see an inferred hierarchy
appear, which will show any movement of classes in the hierarchy

If the reasoner has inferred anything about our model, this is reported in
the reasoner dialog and in a separate results window

inconsistent classes turn
moved classes turn

Primitive Classes

* Primitive Class = only Necessary Conditions

* Can not yet judge an individual based on primitive
classes —why?

=
disjoint tree

Polyhierarchies

We want to create a VegetarianPizza

Some of our existing Pizzas should be types of
VegetarianPizza

However, they could also be types of SpicyPizza or
CheeseyPizza

We need to be able to give them multiple parentsin a
principled way

We could just assert multiple parents like we did with
MeatyVegetableTopping (without disjoints)

BUT...

Asserted Polyhierarchies

In most cases asserting polyhierarchies is bad

Why is this class a subclass of that one?

Adding new classes becomes difficult because all subclasses may
need to be updated

Extracting from a graph is harder than from a tree

®__ e
s
()

CheeseyPizza
* A CheeseyPizza is any pizza that has some
cheese on it

 We would expect then, that some pizzas
might be named pizzas and cheesey pizzas

(among other things later on)

 We can use the reasoner to help us

produce this polyhierarchy without having
to assert multiple parents

Creating a CheeseyPizza

We normally create primitive classes and then migrate them to defined
classes

All of our defined pizzas will be direct subclasses of Pizza

So, we create a CheesyPizza Class (do not make it disjoint) and add a

restriction:
“Every CheeseyPizza must have at least one CheeseTopping”

Classifying shows that we currently don’t have enough information to do any
classification

| Asserted | Inferred

Asserted Conditions

NECESSARY & SUFFICIENT

@ Pizza
£) 3 hasTopping CheeseTopping

NECESSARY
INHERITED

3 hasBase PizzaBase [from Pizza]

Reasoner Classification

* The reasoner has been able to infer that anything that is a Pizza that
has at least one topping from CheeseTopping is a CheeseyPizza

: SUBCLASS RELATIONSHIP

For Project @ pizza

Inferred Hierarchy
owl:Thing
v) DomainConcept
) Courtry
. lceCream
v O Pizza
v e CheeseyPizza
@ American
) AmericanHot
O cajun
@ capricciosa

Why?
Necessary & Sufficient Conditions

» Each set of necessary & sufficient conditions is an Equivalent Class

©

o

1%

equivalent to

subsumed

Untangling

v l@l Pizza
v @) CheeseAndMeatPizzal
v l@ CheeseyPizza
(C) CajunPizza
b (C) CheeseAndMeatPizza2
MargheritaPizza can be found under both (C) MargheritaPizza

NamedPizza and CheeseyPizza in the \E)MushroomPizza

A . > '@ MeatyPizza
inferred hierarch
y © CheeseAndMeatPizza3

> l@ InterestingPizza
v '@ NamedPizza
'@ American
@) CajunPizza
l@ MargheritaPizza
'@ MushroomPizza

* We can see that certain Pizzas are now
classified under multiple parents

Mission Successful!

Untangling

« However, our unclassified version of the
ontology is a simple tree, which is much easier
to maintain

* We’'ve now got a polyhierarchy without
asserting multiple superclass relationships

* Plus, we also know why certain pizzas have
been classified as CheeseyPizzas

Untangling

* We don’t currently have many kinds of
primitive pizza but its easy to see that if we
had, it would have been a substantial task to
assert CheeseyPizza as a parent of lots, if not
all, of them

 And then do it all over again for other defined
classes like MeatyPizza or whatever

Viewing polyhierarchies

o AS We n OW h ave .FOI Project @ pizzas2_3'

multiple P

. . ¥ (C)DomainConcept

inheritance, the v ©pizza

i}] v © MeatyPizza

tree view IS IeSS \E)ChickenPizza
I 'E!' NamedPizza

t h an h e I pfu I i N '_?' Realltalia‘nPiz‘za
- | C)VegetarianPizza

viewing our & -Liowll
uh ie rarc hy”

pizzas2_7 Protégé 3.0 beta

File Edit Project OWL Wizards Tools Code

DeB +

[TabWidgets | Options

T

vl
v
vl
[v
vl
O
O

4

OWLClsesTab
OWLPropertiesTah
FormsTab
OWLIndividualsTal
OWLMetadataTab
ClsesAndinstancesTab

ClsesTab

IKAToolTab
OWLVizTab

RDQOLTab

SlotsTab

Viewing our Hierarchy Graphically

(file:\C:\Nick\Words\Tutorials\internalTraining-2004\0WLTutorial2Package\examples\pizzas2_7.pprj, OWL Files)

Window Help

ClER S

E]]] Properties

Pizza (instance of owl.Class)

Property

Tah Widget

|E[[]Plopemes
v @hasTopping (muttiple Pi
PizzaTopping

C) PizzaBase

pping)

Properties View

o, OWLYiZ

ct OWL Wizards Tools
fﬁ' Archive Current Version

N . .
% Revertto a Previous Version

=rics...

Encodings...

OWW1Viz Tab

| o O’W‘I.Cksses I M Propeds | " @ Metadata I .ﬂ. OWLYiz
% Qe : | & [vz

@ o‘ v O B : @
|‘ Asserted hxdel I Inferr

CLASS BROWSER

For Project @ pizza

Asserted Hierarchy

owl:Thing
v) DomainConcept
© Country

daTopping

eseTopping

AncherisaTopsing ~ &~
B ChesseTopping _r}—————(PamesanTopping

MixcaSeatooaTopping
s FourCheesesTopping

C PrawnaTopeing -
NMazzarcllaToppirg

CrickenTopping

“McatTopping it HorSpiceaBestTopping
<

ThinAncCispyBase PeporoniSausageTopping

HamTopeing yt—

Pizza -i;" e . @m)
N oy = B el

e 7 ar
Spinest)< vex) = Cgimrz Y

2
i (Namoceizza it

Using OWLViz to untangle

The asserted hierarchy should, ideally, be a
tidy tree of disjoint primitives

The inferred hierarchy will be tangled

By switching from the asserted to the inferred

hierarchy, it is easy to see the changes made
by the reasoner

OWLViz can be used to spot tangles in the

primitive tree and also disjoints (including
inherited ones) are marked (with a -)

Defined Classes

 We've created a Defined Class, CheeseyPizza

It has a definition. That is at least one Necessary and Sufficient condition

Classes, all of whose individuals satisfy this definition, can be inferred to be
subclasses
Therefore, we can use it like a query to “collect” subclasses that satisfy its conditions

Reasoners can be used to organise the complexity of our hierarchy

* It’s marked with an equivalence symbol in the interface
* Defined classes are rarely disjoint

Define a Vegetarian Pizza
* Not as easy as it looks...

* Define in words?
— “a pizza with only vegetarian toppings”?
— “a pizza with no meat (or fish) toppings”?
— “a pizza that is not a MeatyPizza”?

* More than one way to model this

We’'ll start with the first example

Define a Vegetarian Pizza

To be able to define a vegetarian pizza as
a Pizza with only Vegetarian Toppings

we need:

1. To be able to create a vegetarian topping
This requires a Union Class

2. To be able to say “only”
This requires a Universal Restriction

Union Classes
ka “disjunction”
nis OR That OR TheOther
nis L Thattd TheOther

u

» Covering axioms

» Closure

Covering Axioms

Covering axiom — a union expression containing several covering
classes

A covering axiom in the Necessary & Sufficient Conditions of a class
means:

the class cannot contain any instances other than those from the
covering classes

NB. If the covering classes are subclasses of the covered class, the
covering axiom only needs to be a Necessary condition — it doesn’t
harm to make it Necessary & Sufficient though — its just redundant

Covering PizzaBase
LS

In this example, the class PizzaBase is
covered by ThinAndCrispy or
DeepPan

“All PizzaBases must be
ThinAndCrispy or DeepPan”

“There are no other types of
PizzaBase”

Universal Restrictions

* We need to say our VegetarianPizza can only
have toppings that are vegetarian toppings

* We can do this by creating a Universal or
AllValuesFrom restriction

 We’'ll first look at an example...

Real Italian Pizzas

* “RealltalianPizzas only have bases that are
Th | nAn d C rls py” OWLRestriction

o7 allValuesFrom
9 someValuesFrom
€ hasValue

* A Universal Restriction is ~frdianl
added JUSt ||ke an emax(;ardil;ali:y
Existential one, but the

restriction type is different

* For now, this can be primitive — you can make it
defined if you like

What does this mean?

Y hasBase ThinAndCrispy
necessary condition

necessary
only have

What does this mean?

Y hasBase ThinAndCrispy
necessary condition

No individual
other than

Warning: Trivial Satisfaction

had not d hasBase PizzaBase

S

necessary

only have a
or no hasBase relationship at all

» Universal Restrictions by themselves do not state “at least one”

VegetarianPizza Classification

Nothing classifies under VegetarianPizza

Actually, there is nothing wrong with our definition of VegetarianPizza
It is actually the descriptions of our Pizzas that are incomplete

The reasoner has not got enough information to infer that any Pizza is
subsumed by VegetarianPizza

This is because OWL makes the Open World Assumption

Open World Assumption

In a closed world (like DBs), the information we have is everything

In an open world, we assume there is always more information than is
stated

Where a database, for example, returns a negative if it cannot find some
data, the reasoner makes no assumption about the completeness of the

information it is given

The reasoner cannot determine something does not hold unless it is
explicitly stated in the model

Open World Assumption

Typically we have a pattern of several Existential
restrictions on a single property with different
fillers — like primitive pizzas on hasTopping

Existential restrictions should be paraphrased by
“amongst other things...”

Must state that a description is complete
We need closure for the given property

Closure

 Thisis in the form of a Universal Restriction
with a filler that is the Union of the other
fillers for that property

* Closure works along a single property

Closure example: MargheritaPizza

All MargheritaPizzas must have:

at least 1 topping from MozzarellaTopping and
at least 1 topplng from TomatoTopplng and

| Assened Inferred

Asserted Conditions
NECESSARY & SUFFICIENT
NECESSARY
~ NamedPizza
! ¥ hasTopping (MozzarellaTopping 11 TomatoTopping)
&) 3 hasTopping MozzarellaTopping
£) 3 hasTopping TomatoTopping

The last part is paraphrased into “no other toppings”
The union closes the hasTopping property on MargheritaPizza

