Representing and Storing Complex Digital Objects Fedora

CS 431 - April 11, 2005 Carl Lagoze - Cornell University

Acknowledgements:
Sandy Payette (Cornell)

The Fedora Project

- Fedora
 - Flexible
 - Extensible
 - Digital
 - Object
 - Repository
 - Architecture
- Open source software
 - Not Red Hat!
 - Mozilla Public License

http://www.fedora.info

Heterogeneous Digital Content

· Conventional objects

· Complex, compound, dynamic objects

Fedora History

Cornell Research (1997-present)

- DARPA and NSF-funded research
- First reference implementation developed
- Distributed, Interoperable Repositories (experiments with CNRI)
- Policy Enforcement

First Application (1999-2001)

- University of Virginia digital library prototype
- Technical implementation: adapted to web; RDBMS storage
- Scale/stress testing for 10,000,000 objects

Open Source Software (2002-present)

- Andrew W. Mellon Foundation grants
- Technical implementation: XML and web services
- Fedora 1.0 (May 2003)
- Fedora 2.0 (Jan 2005)

Fedora Use Cases

- Digital Library Collections
- Institutional Repository
- Educational Software
- Information Network Overlay
- Digital archives and preservation
- Digital Asset Management
- Content Management System
- Scholarly publishing

Selected Fedora Users

- University of Virginia: digital library (image collector, EAD, e-texts)
- VTLS (software company): commercial product (VITAL)
- Tufts University: education (VUE/concept maps); digital library
- Northwestern: academic technologies (<u>images</u>, <u>art</u>, video, e-texts)
- · National Science Digital Library (NSDL): Cornell Core Integration
- · ARROW: National Library of Australia and Monash University
- Royal Library of Denmark and DTU
- Rutgers University: <u>digital library</u> (e-journals, numeric data)
- Indiana University: EVIA Digital Archive (video)
- · American Geophysical Union: scholarly publications
- · University of Delaware: art collections
- · Hamilton College: image and text collections
- Yale University electronic records
- New York University: humanities computing; digital library
- · OhioLink
- DISA South Africa, History of Apartheid resistance

Why Fedora? (1)

Digital Object Model

- Abstraction for heterogeneous digital resources
- Container for content and metadata
- Aggregate local and remote content
- Associate behaviors with objects (extensible service interfaces)

· Repository web service

- Digital object storage
- Web service APIs (SOAP and REST) to manage, access, search
- Relationships
- Define and query object-to-object relationships

· Feature-worthy for archiving and preservation

- XML object serialization for ingest, storage, and export
- Content versioning
- Event history

Why Fedora? (2)

· Content repurposing

- Reuse digital content in different contexts
- Re-purpose content via mechanisms for dynamically transforming content to fit new requirements

Web Services

- SOAP and REST bindings
- WSDL to define interfaces
- XML transmission

Easy integration with other apps and systems

- Does not assume any particular workflow or end-user application
- Generic repository service as substrate

Digital Object Model

"Graph" View of Fedora Objects

Fedora Digital Object Model Component View

Persistent ID (PID)

Relations (RELS-EXT)

Dublin Core (DC)

Audit Trail (AUDIT)

Datastream

Datastream

Default Disseminator

Disseminator

Digital object identifier

Reserved Datastreams

Key object metadata

Datastreams

Set of content or metadata items

Disseminators

Pointers to service definitions to provide service-mediated views

The Datastream Component

4 Classifications for Datastreams

Inline XML

Fedora stores a name-spaced block of XML content within the Fedora digital object XML file.

Managed Content

Fedora stores and manages the content bytestream (non-XML content)

External Referenced

Fedora stores a reference (URL) to the content

External Redirected

Fedora stores a reference (URL) to the content, but will not mediate access to content. (Optimized for streaming)

Simple Fedora model for aggregating static content

- Representations map to datastreams
- Datastreams may be local or surrogates (redirect) to remote data
- REST URL's give client access to representations

Digital Object Aggregating Local Content

Digital Object for Local and Remote Content

Fedora for dynamic content

- Representations map to service-based transforms of data (in addition to static datastreams)
- Opaque to REST based access (client see only representations, not how they are produced)
- Motivating examples
 - Canonical XML metadata format XSLT to Dublin Core
 - Document source in TeX, programmatic transform to PDF, PS, HTML, etc.

Understanding Dynamic Disseminations (1)

Dissemination Requests Client Uniform API, Data & Fedora Service Mediation Datastreams as data Data surrogates Web Transformation of data Service according to arguments

Understanding Dynamic Disseminations (2)

- Behavior Definitions (bDef)
 - Special digital object defining client side functionality (method template)
- Behavior Mechanism (bMech)
 - Special digital object that refines a bDef by defining:
 - Data profile: set of datastreams required for execution
 - · Service binding: where the work is performed
 - May be many bMechs for a bDef
- Disseminator
 - Association of a bMech/bDef with a digital object endowing it with bDef-defined functionality (methods)
 - A digital object may have multiple disseminators (polymorphic typing)

Understanding Dynamic Disseminations (3)

Dynamic Dissemination Access

Dynamic Dissemination Example

Fedora - XML for digital objects

FOXML (Fedora Object XML)

- Simple XML format directly expresses Fedora object model
- Easily adapts to Fedora new and planned features
- Easily translated to other well-known formats
- Internal storage format for objects in repository

XML-based Ingest/Export of objects

- FOXML, METS (Fedora extension)
- Extensible to accommodate new XML formats
- Planned: METS 1.4, MPEG21 DIDL

FOXML - Object Properties

```
<foxml:objectProperties>
  <foxml:property NAME="http://www.w3.org/1999/02/22-rdf-syntax-ns#type" VALUE="FedoraObject"/>
  <foxml:property NAME="info:fedora/fedora-system:def/model#state" VALUE="A" />
  <foxml:property NAME="info:fedora/fedora-system:def/model#label" VALUE="Sandy's Test Object"/>
  <foxml:property NAME="info:fedora/fedora-system:def/model#contentModel" VALUE="TEST"/>
  </foxml:objectProperties>
```

FOXML - Datastream (type 'E')

FOXML - Relationships Datastream

FOXML - Disseminator

Fedora Resource Index:

Using RDF and ontologies

Fedora Digital Objects Resource Index View

Fedora 2.0 and RDF

Object-to-object Relationships

- Ontology of common relationships (RDF schema)
- Relationships stored in special datastream (RELS-EXT)

Resource Index (RI)

- RDF-based index of repository (Kowari triple-store)
- Graph-based index includes:
 - · Object properties and Dublin Core
 - · Object Relationships
 - · Object Disseminations

RI Search

- Powerful querying of graph of inter-related objects
- REST-based query interface (using RDQL or ITQL)
- Results in different formats (triples, tuples, sparql)

Uses of Object Relationships

- Define collections (e.g., collection objects)
- Assert critical relationships among object for management purposes
- Enable network overlay
 - Surrogate objects referring to external entities
 - Assert relationships among them
 - Assert other relationships (e.g., annotations)
- Enable navigation of repository (as tree or graph)

Fedora Relationship Ontology (RDFS)

- isPartOf / hasPart
- isMemberOf / hasMember
- isDescriptionOf / hasDescription
- hasEquivalent
- · ... others

Demo: Collection - Member Relationships

- Collection Object [smiley]
 - Datastream containing a query to Resource Index for all members of collection
- Image Objects [brush]
 - Use RELS-EXT datastream to assert relationship to collection object

Fedora Repository Service

Fedora Repository Service

Fedora Repository: 3 Layers

	1
1. Interfaces	 Access/Search Service
	 Management Service
	• OAI Provider Service
	 Resource Index Service
2. Modules	Configurable modules that implement all repository functionality in terms of the Fedora digital object model.
3. Persistent Store	 RDBMS Digital object registry Object "cache" for performance File System XML object serializations Managed Content (Datastreams)

Fedora 2.0 Server Feature Set

- Management module
 - Ingest and Export (NEW! METS or FOXML)
 - Validation (XML and Schematron Rules)
 - PID assignment
 - Replication to object cache
 - Incremental indexing of metadata
 - Object create/modify/delete/purge
- XML Translation module
 - METS or FOXML ingest and export
 - Convert between formats
- · Storage module:
 - File system for XML object wrappers
 - relational db object registry and object cache
- · Content Versioning
 - Automatic version control for datastreams and disseminators
 - Enables date-time stamped API requests (see object as it looked then)

Fedora 2.0 Server Feature Set

- Access and Dissemination modules
 - Mediation auto-dispatching to distributed web services for content transformation
 - Built-in services: XSLT, image manipulation, xml-to-PDF
- · Search Module
 - Searching of object properties and DC record of each object
- Security module
 - HTTP Basic Authentication and simple access control
 - NEW! LDAP tie-in for user attributes
 - NEW! XACML policies and policy enforcement
 - Future: Shibboleth
- · OAI-PMH
- Resource Index
 - RDF-based index of repository (Kowari triple-store)
 - Contains key object attributes, DC, relationships
 - REST-based query interface (using RDQL or ITQL)

Fedora Web Service APIs in a Nutshell

Management Service (API-M)

- Ingest Object
- Export Object
- Get Object XML
- Purge Object
- Modify Object
- Get Next PID
- Get Datastream(s)
- Get DatastreamHistory
- Get DisseminatorHistory
- Get Disseminator(s)
- Add/modify/purge Datastream
- Add/modify/purge Disseminator
- Set State

Fedora Web Service APIs in a Nutshell

- Access Service (API-A and API-A-LITE)
 - Describe Repository
 - Get Object Profile
 - Get Object History
 - Get Datastream
 - Get Dissemination
 - Find Objects
 - Resume Find Objects

Fedora Web Service APIs in a Nutshell

· API-A-Lite

- Repository-level operations:
 - fedora/describe Describe Repository
 - · fedora/search methods to locate objects via the default repository index
- Object-level operations:
 - · fedora/get method to get object profile
 - fedora/get/.. method to "disseminate" a view of an object's content
 - Fedora/getMethods methods get information about all disseminations available on object
- · OAI-PMH Provider Service
 - All OAI-PMH methods to harvest OAI-DC from each object

Fedora 2.0 - Clients

Fedora Administrator (via Fedora SOAP interfaces)

- Java Swing client
- Ingest/Export objects
- Batch creation and modification of objects
- One-up creation and modification of objects
- Search repository
- Wizards for creating BDEF/BMECH objects

Web Browser (via Fedora REST interfaces)

- Access, Search,
- OAI
- Resource Index
- Selected management operations

· Command Line Utilities

- Ingest, export, purge
- Migration

Fedora Software Distribution

- · Open Source (Mozilla Public License)
- 100% Java (Sun Java J2SDK1.4)
- Supporting Technologies
 - Apache Tomcat and Apache Axis (SOAP)
 - Xerces for XML parsing and validation
 - Saxon for XSLT transformation
 - Schematron for validation
 - MySQL and Mckoi relational database
 - Oracle 9i support
 - Kowari for triple-store
- Deployment Platforms
 - Windows 2000, NT, XP
 - Solaris
 - Linux
 - Mac OSX

Fedora 2.1 (May 2005)

- Authentication plug-ins
 - HTTP basic authentication and SSL
 - Plug-in #1: user/password file
 - Plug-in #2: LDAP tie-in
 - Plug-in #3: Radius Authentication
- Authorization module
 - XACML policy enforcement for API operations
- New OAI Provider (stand-alone service)
- Support for MPEG21-DIDL (ingest/export/oai)
- Misc. enhancements