Problem 1 - 7.2.1. (b) Show that B = {a™b"c'|i < n} is not context free.
Proof: Let z = aFb*c*, and suppose z = wvwzy such that vz # € and |[vwz| < k.

There are several ways we can do this:

2 L (k=Dk) pk ok
)

(1) v and z contain only a or only b. In this case, take r = uv?wz?y = a al
or a similar formulation for b. Since there are more as than bs, r ¢ B.

(2) v and z contain both as and bs. Take r = uv’wz%y. Since there are k bs, and the
length of vwz is bounded by k, if vwz contains as, it cannot also contain cs. Hence,
r has fewer as and fewer bs than cs, and therefore r ¢ B.

(3) v and = contain both bs and cs. By the same reasoning as above, vwz can only
contain bs and cs. Take r = uv%wa'y, which removes some of the bs, but keeps just
as many as. Since there are more as than bs, r is not an element of B.

(4) finally, v and 2 can contain only cs. In this case, we take r = uv?waz?y. Since v and
x are composed of only cs, we increase the number of cs, keeping the number of as
and bs constant, so 7 has more c¢s than as or bs. Hence, r ¢ B.

Since we can always choose some i such that uvwa'y ¢ B, we have proved by the
pumping lemma that B is not context free.

(c) Show that C' = {cP|p is prime} is not context free.

Proof: for any given k, let z = 0P, where p is a prime greater than k + 2, so |z| > k.
Suppose z = uvwzxy such that |vx| # 0 and |[vwz| < k. Then let i = p — |v| — |z|. We claim
that r = w'wa'y ¢ C.

First, let us define |u| = a, [v] = b, |w| = ¢, |x| = d and |y| = e. The length of r is

luv'wa'y| = a+c+e+ (p—b—d)(b+d)
=p—b—d+(p—b—d)(b+d)
=(p—-b—d)(b+d+1)

Since vw # €, we know that (b+d+1) > 1. We chose p > k42,50 b+d < k < k+2 = p,
which means that p—b—d > k+2—b—d > 1. Hence |r| has two factors, neither of which is
1, and so r must be composite, and therefore not in C'. We conclude that, by the pumping
lemma, C' is not context free.

(f) Show that F = {ww®w |w is binary} is not context free.
Proof: let w = 1¥0*. We have three ways of dividing z = ww®w = 1¥02*12*0* into
UVWLY.

e First, suppose vwz is part of the first block of ones (that is, it contains no zeroes). If
we take r = uv?wa?y, then we have increased the number of ones in the first block.
We know that our new w’ must end in a zero, since r ends in a zero, so the first
block of zeroes separates w’ from (w’)®w’. There is no way of forming w’(w’)%w’
from this, so we know that r ¢ B.

e A similar argument works if vwx is part of any of the other three contiguous blocks
of ones or zeroes.

e Suppose vwz lies on the boundary between two blocks. Again, because of length
restrictions, vwx can only lie on one boundary, and can’t span three blocks. Let
r = uv’wz’y. We know that w’ must begin with a one and end in a zero, so we still
have w’ = 1™0". However, r is no longer of the form 1902¢12¢0%, so r cannot be in
F.

Hence, by the pumping lemma, F' is not context free.

CS481 Homework 9: Problem 7.2.5

Question 2 (7.2.5)

(a)

Show {07170%|j = maz(i, k)} is not a CFL using Ogden’s lemma:

We begin selecting z = 02712"0" and marking all the last 0’s (for example, z = 02”12"()”). If we select
v or x to have both 0’s and 1’s in it, we can instantly see that our syntax is no longer correct. If we
select v to be 0 or 1 then we can also see that our original assumption that j = maxz(i, k) no longer
holds because one of the numbers will grow while the other will remain the same. Our only choice
is to have v and x exclusively contain 0. When we start pumping it, at some point the number of 0
(corresponding to k) will grow to be larger than ¢ and j, therefore once again breaking our condition
that j = max(i, k). Therefore, the language is not a CFL.

Show {a™b"c!|i # n} is not a CFL using Ogden’s lemma:

Consider the case where we choose z to be a”b"c™*™ (where n is the constant from Ogden’s lemma).
We mark all the a’s and all the b’s. We first note that if v or x contain a mix of a’s and b’s, then we
can see that with ¢ = 2, the structure of the resulting grammar is no longer correct. We now look at
the case where v = a® and = = b®. If o # (3 then we can also see that the number of a’s and b’s will be
different, therefore @« = 3. We can now call v = a = (8 and see that our final string will be of the form

anJr'y(ifl)anr'y(ifl)Cn!Jrn
Therefore, if we set the exponents of a or b equal to ¢, we get that
n+vy(E—1)=nl+n
v —1) =nl!
n!
i—1=7

Since v < n we know that the right side divides evenly and therefore we can pick an i that satisfies
this constraint, therefore our original constraint of {a™b"c"|i # n} is not satisfied, therefore we do not
have a CFL.

CS 381/481 Homework 9

7.4.5

Let Njja denote the number of distinct parse trees for substring a;...a; of the input w, starting
from variable A (i.e., with A as the root of the parse tree). Note that we are using A here as a
metavariable, not any particular variable in G that might have been named A. Ny, g, where n = |w|
and S the starting variable of G, is the value we are interested in. We can augment the CYK
algorithm to compute each IN;j4 as we compute the corresponding X;;. That is, after computing

Xi; in CYK, we proceed to compute N;;4 for each variable A.
Initially, we set all N;;4 to 0.

For the base case, we can compute the first row of IV as follows. N;;4 is 1 if A — a; is a production

of G. Otherwise, N;; 4 remains 0.

To compute N;ja, j —i > 0, we look at each of the pairs (Xi;, Xiq15),...,(Xij—1,X;;) the same
way plain CYK did. For each pair, we look at each element of the cross product of that pair. That
is, for (Xx, Xx+1,j), we consider all pairs (B, C) such that B € X, and C € Xj11;. If A— BC'is

a production, we increment N;;a by Nz X Niy1,5.c-
When the algorithm completes, Ny,s would contain the solution.

For the special case when w = ¢, this algorithm won’t work, but the answer is easy. It’s 1if S — ¢

is a production, 0 otherwise.

Homework 9 COM S 481 Fall 2005 Kevin Canini
October 23, 2005 Intro to Theory of Computing krc25@Qcornell.edu

Problem 4 (a). The set {a’b/c’|i,j > 0} is a DCFL because we can construct a DPDA M
accepting it. Let M = ({q¢s,94,98,9c},{a,b,c}, {4, Zo},0,qs, Zo,0) be a DPDA that accepts by
empty stack. We define § as follows:

6(gs, €, 20) = (qas¢€)
6(qa,a, A) = (qa,AA)
6(qa,b,A) = (gB,A)
6(gB, b, A) = (gB,4)
o(g,c, A) = (qc¢€)

6(gc,c, A) = (qcy€)
Intuitively, the DPDA pushes an A onto the stack for each a it sees at the beginning of the input.
Then it reads the bs without altering the stack, and then for each c it reads, it pops an A off the
stack. If the number of as equals the number of ¢s, then the stack will be empty at the end of
the input.

Problem 4 (b). Assume WLOG that L is a DCFL accepted by a DPDA M = (Q, X, T, 4, qo, Zo, F),
which accepts by final state. Then the DPDA M’ = (Q, %, T, 6, qo, Zo, Q@ — F) accepts L. To see
this, notice that running M on any input string w will put the machine in exactly one state
qw, since it is deterministic. Thus, after running M’ on input w it will also end in state g.
This state is final in M iff it is not final in M’, and so w is in L(M) iff it is not in L(M'). So
L(M")=L(M)=L.

Problem 4 (c). We have shown that Ly = {a'b/¢'|i,j > 0} is a DCFL, and we can similarly
show that Ly = {a’b'¢?|i,j > 0} is a DCFL. However, we know that L; N Ly = {a'b’c'|i > 0} is
not a CFL, and thus it is not a DCFL either (since DCFLs are a subset of CFLs).

Problem 4 (d). We can show that L; = {a'b'c*|i,j,k > 0,i # j} and Ly = {a'b/cFli, 5,k >
0,7 # k} are both DCFLs. Assume for a contradiction that L; U Ly is a DCFL. It follows by
(b) that its complement, Li N Lg is a DCFL, and thus is a CFL. Since CFLs are closed under
intersection with regular sets, we have that {a*b*c*} N (L1 N Lg) is also a CFL. But this set is
equal to {a’b'c’|i > 0}, which we already know to be not context-free.

	481,h9,prob1.pdf
	CS481 Homework 9 Problem 2.pdf
	cs481-hw9-7.4.9-solution.pdf
	CS 481 HW9 Prob 4.pdf

