
Problem 1 - 7.2.1. (b) Show that B = {anbnci|i ≤ n} is not context free.
Proof: Let z = akbkck, and suppose z = uvwxy such that vx 6= ε and |vwx| ≤ k.

There are several ways we can do this:
(1) v and x contain only a or only b. In this case, take r = uv2wx2y = ala(k−l)k)bkck,

or a similar formulation for b. Since there are more as than bs, r /∈ B.
(2) v and x contain both as and bs. Take r = uv0wx0y. Since there are k bs, and the

length of vwx is bounded by k, if vwx contains as, it cannot also contain cs. Hence,
r has fewer as and fewer bs than cs, and therefore r /∈ B.

(3) v and x contain both bs and cs. By the same reasoning as above, vwx can only
contain bs and cs. Take r = uv0wx0y, which removes some of the bs, but keeps just
as many as. Since there are more as than bs, r is not an element of B.

(4) finally, v and x can contain only cs. In this case, we take r = uv2wx2y. Since v and
x are composed of only cs, we increase the number of cs, keeping the number of as
and bs constant, so r has more cs than as or bs. Hence, r /∈ B.

Since we can always choose some i such that uviwxiy /∈ B, we have proved by the
pumping lemma that B is not context free.

(c) Show that C = {cp|p is prime} is not context free.
Proof: for any given k, let z = 0p, where p is a prime greater than k + 2, so |z| > k.

Suppose z = uvwxy such that |vx| 6= 0 and |vwx| ≤ k. Then let i = p− |v| − |x|. We claim
that r = uviwxiy /∈ C.

First, let us define |u| = a, |v| = b, |w| = c, |x| = d and |y| = e. The length of r is

|uviwxiy| = a + c + e + (p− b− d)(b + d)

= p− b− d + (p− b− d)(b + d)

= (p− b− d)(b + d + 1)

Since vw 6= ε, we know that (b+d+1) > 1. We chose p > k+2, so b+d ≤ k < k+2 = p,
which means that p−b−d ≥ k+2−b−d > 1. Hence |r| has two factors, neither of which is
1, and so r must be composite, and therefore not in C. We conclude that, by the pumping
lemma, C is not context free.

(f) Show that F = {wwRw |w is binary} is not context free.
Proof: let w = 1k0k. We have three ways of dividing z = wwRw = 1k02k12k0k into

uvwxy.
• First, suppose vwx is part of the first block of ones (that is, it contains no zeroes). If

we take r = uv2wx2y, then we have increased the number of ones in the first block.
We know that our new w′ must end in a zero, since r ends in a zero, so the first
block of zeroes separates w′ from (w′)Rw′. There is no way of forming w′(w′)Rw′

from this, so we know that r /∈ B.
• A similar argument works if vwx is part of any of the other three contiguous blocks

of ones or zeroes.
• Suppose vwx lies on the boundary between two blocks. Again, because of length

restrictions, vwx can only lie on one boundary, and can’t span three blocks. Let
r = uv0wx0y. We know that w′ must begin with a one and end in a zero, so we still
have w′ = 1m0n. However, r is no longer of the form 1a02a12a0a, so r cannot be in
F .

Hence, by the pumping lemma, F is not context free.

1

CS481 Homework 9: Problem 7.2.5

Question 2 (7.2.5)

(a) Show {0i1j0k|j = max(i, k)} is not a CFL using Ogden’s lemma:
We begin selecting z = 02n12n0n and marking all the last 0’s (for example, z = 02n12n0̂n). If we select
v or x to have both 0’s and 1’s in it, we can instantly see that our syntax is no longer correct. If we
select v to be 0 or 1 then we can also see that our original assumption that j = max(i, k) no longer
holds because one of the numbers will grow while the other will remain the same. Our only choice
is to have v and x exclusively contain 0̂. When we start pumping it, at some point the number of 0̂
(corresponding to k) will grow to be larger than i and j, therefore once again breaking our condition
that j = max(i, k). Therefore, the language is not a CFL.

(b) Show {anbnci|i 6= n} is not a CFL using Ogden’s lemma:
Consider the case where we choose z to be anbncn!+n (where n is the constant from Ogden’s lemma).
We mark all the a’s and all the b’s. We first note that if v or x contain a mix of a’s and b’s, then we
can see that with i = 2, the structure of the resulting grammar is no longer correct. We now look at
the case where v = aα and x = bβ . If α 6= β then we can also see that the number of a’s and b’s will be
different, therefore α = β. We can now call γ = α = β and see that our final string will be of the form

an+γ(i−1)bn+γ(i−1)cn!+n

Therefore, if we set the exponents of a or b equal to c, we get that

n + γ(i− 1) = n! + n

γ(i− 1) = n!

i− 1 =
n!
γ

Since γ ≤ n we know that the right side divides evenly and therefore we can pick an i that satisfies
this constraint, therefore our original constraint of {anbnci|i 6= n} is not satisfied, therefore we do not
have a CFL.

1

CS 381/481 Homework 9

7.4.5

Let NijA denote the number of distinct parse trees for substring ai . . . aj of the input w, starting
from variable A (i.e., with A as the root of the parse tree). Note that we are using A here as a
metavariable, not any particular variable in G that might have been named A. N1nS , where n = |w|
and S the starting variable of G, is the value we are interested in. We can augment the CYK
algorithm to compute each NijA as we compute the corresponding Xij . That is, after computing
Xij in CYK, we proceed to compute NijA for each variable A.

Initially, we set all NijA to 0.

For the base case, we can compute the first row of N as follows. NiiA is 1 if A → ai is a production
of G. Otherwise, NiiA remains 0.

To compute NijA, j − i > 0, we look at each of the pairs (Xii, Xi+1,j), . . . , (Xi,j−1, Xjj) the same
way plain CYK did. For each pair, we look at each element of the cross product of that pair. That
is, for (Xik, Xk+1,j), we consider all pairs (B,C) such that B ∈ Xik and C ∈ Xk+1,j . If A → BC is
a production, we increment NijA by NikB ×Nk+1,j,C .

When the algorithm completes, N1nS would contain the solution.

For the special case when w = ε, this algorithm won’t work, but the answer is easy. It’s 1 if S → ε

is a production, 0 otherwise.

1

Homework 9 COM S 481 Fall 2005 Kevin Canini
October 23, 2005 Intro to Theory of Computing krc25@cornell.edu

Problem 4 (a). The set {aibjci|i, j ≥ 0} is a DCFL because we can construct a DPDA M
accepting it. Let M = ({qS , qA, qB, qC}, {a, b, c}, {A,Z0}, δ, qS , Z0, ∅) be a DPDA that accepts by
empty stack. We define δ as follows:

δ(qS , ε, Z0) = (qA, ε)
δ(qA, a, A) = (qA, AA)
δ(qA, b, A) = (qB, A)
δ(qB, b, A) = (qB, A)
δ(qB, c, A) = (qC , ε)
δ(qC , c, A) = (qC , ε)

Intuitively, the DPDA pushes an A onto the stack for each a it sees at the beginning of the input.
Then it reads the bs without altering the stack, and then for each c it reads, it pops an A off the
stack. If the number of as equals the number of cs, then the stack will be empty at the end of
the input.

Problem 4 (b). Assume WLOG that L is a DCFL accepted by a DPDA M = (Q,Σ,Γ, δ, q0, Z0, F),
which accepts by final state. Then the DPDA M ′ = (Q,Σ,Γ, δ, q0, Z0, Q− F) accepts L. To see
this, notice that running M on any input string w will put the machine in exactly one state
qw, since it is deterministic. Thus, after running M ′ on input w it will also end in state qw.
This state is final in M iff it is not final in M ′, and so w is in L(M) iff it is not in L(M ′). So
L(M ′) = L(M) = L.

Problem 4 (c). We have shown that L1 = {aibjci|i, j ≥ 0} is a DCFL, and we can similarly
show that L2 = {aibicj |i, j ≥ 0} is a DCFL. However, we know that L1 ∩ L2 = {aibici|i ≥ 0} is
not a CFL, and thus it is not a DCFL either (since DCFLs are a subset of CFLs).

Problem 4 (d). We can show that L1 = {aibjck|i, j, k ≥ 0, i 6= j} and L2 = {aibjck|i, j, k ≥
0, j 6= k} are both DCFLs. Assume for a contradiction that L1 ∪ L2 is a DCFL. It follows by
(b) that its complement, L1 ∩ L2 is a DCFL, and thus is a CFL. Since CFLs are closed under
intersection with regular sets, we have that {a∗b∗c∗} ∩ (L1 ∩ L2) is also a CFL. But this set is
equal to {aibici|i ≥ 0}, which we already know to be not context-free.

	481,h9,prob1.pdf
	CS481 Homework 9 Problem 2.pdf
	cs481-hw9-7.4.9-solution.pdf
	CS 481 HW9 Prob 4.pdf

