Problem 1-7.2.1. (b) Show that $B=\left\{a^{n} b^{n} c^{i} \mid i \leq n\right\}$ is not context free.
Proof: Let $z=a^{k} b^{k} c^{k}$, and suppose $z=u v w x y$ such that $v x \neq \epsilon$ and $|v w x| \leq k$. There are several ways we can do this:
(1) v and x contain only a or only b. In this case, take $r=u v^{2} w x^{2} y=a^{l} a^{(k-l) k)} b^{k} c^{k}$, or a similar formulation for b. Since there are more a s than $b s, r \notin B$.
(2) v and x contain both $a s$ and $b s$. Take $r=u v^{0} w x^{0} y$. Since there are $k b s$, and the length of $v w x$ is bounded by k, if $v w x$ contains $a s$, it cannot also contain $c s$. Hence, r has fewer a s and fewer $b \mathrm{~s}$ than $c \mathrm{~s}$, and therefore $r \notin B$.
(3) v and x contain both b s and $c s$. By the same reasoning as above, $v w x$ can only contain b s and c s. Take $r=u v^{0} w x^{0} y$, which removes some of the $b \mathrm{~s}$, but keeps just as many a s. Since there are more a s than $b s, r$ is not an element of B.
(4) finally, v and x can contain only c. In this case, we take $r=u v^{2} w x^{2} y$. Since v and x are composed of only $c s$, we increase the number of $c s$, keeping the number of $a s$ and $b \mathrm{~s}$ constant, so r has more c s than a s or $b \mathrm{~s}$. Hence, $r \notin B$.
Since we can always choose some i such that $u v^{i} w x^{i} y \notin B$, we have proved by the pumping lemma that B is not context free.
(c) Show that $C=\left\{c^{p} \mid p\right.$ is prime $\}$ is not context free.

Proof: for any given k, let $z=0^{p}$, where p is a prime greater than $k+2$, so $|z|>k$. Suppose $z=u v w x y$ such that $|v x| \neq 0$ and $|v w x| \leq k$. Then let $i=p-|v|-|x|$. We claim that $r=u v^{i} w x^{i} y \notin C$.

First, let us define $|u|=a,|v|=b,|w|=c,|x|=d$ and $|y|=e$. The length of r is

$$
\begin{aligned}
\left|u v^{i} w x^{i} y\right| & =a+c+e+(p-b-d)(b+d) \\
& =p-b-d+(p-b-d)(b+d) \\
& =(p-b-d)(b+d+1)
\end{aligned}
$$

Since $v w \neq \epsilon$, we know that $(b+d+1)>1$. We chose $p>k+2$, so $b+d \leq k<k+2=p$, which means that $p-b-d \geq k+2-b-d>1$. Hence $|r|$ has two factors, neither of which is 1 , and so r must be composite, and therefore not in C. We conclude that, by the pumping lemma, C is not context free.
(f) Show that $F=\left\{w w^{R} w \mid w\right.$ is binary $\}$ is not context free.

Proof: let $w=1^{k} 0^{k}$. We have three ways of dividing $z=w w^{R} w=1^{k} 0^{2 k} 1^{2 k} 0^{k}$ into uvwxy.

- First, suppose $v w x$ is part of the first block of ones (that is, it contains no zeroes). If we take $r=u v^{2} w x^{2} y$, then we have increased the number of ones in the first block. We know that our new w^{\prime} must end in a zero, since r ends in a zero, so the first block of zeroes separates w^{\prime} from $\left(w^{\prime}\right)^{R} w^{\prime}$. There is no way of forming $w^{\prime}\left(w^{\prime}\right)^{R} w^{\prime}$ from this, so we know that $r \notin B$.
- A similar argument works if $v w x$ is part of any of the other three contiguous blocks of ones or zeroes.
- Suppose $v w x$ lies on the boundary between two blocks. Again, because of length restrictions, $v w x$ can only lie on one boundary, and can't span three blocks. Let $r=u v^{0} w x^{0} y$. We know that w^{\prime} must begin with a one and end in a zero, so we still have $w^{\prime}=1^{m} 0^{n}$. However, r is no longer of the form $1^{a} 0^{2 a} 1^{2 a} 0^{a}$, so r cannot be in F.
Hence, by the pumping lemma, F is not context free.

Question 2 (7.2.5)
(a) Show $\left\{0^{i} 1^{j} 0^{k} \mid j=\max (i, k)\right\}$ is not a CFL using Ogden's lemma:

We begin selecting $z=0^{2 n} 1^{2 n} 0^{n}$ and marking all the last 0 's (for example, $z=0^{2 n} 1^{2 n} \hat{0}^{n}$). If we select v or x to have both 0 's and 1's in it, we can instantly see that our syntax is no longer correct. If we select v to be 0 or 1 then we can also see that our original assumption that $j=\max (i, k)$ no longer holds because one of the numbers will grow while the other will remain the same. Our only choice is to have v and x exclusively contain $\hat{0}$. When we start pumping it, at some point the number of $\hat{0}$ (corresponding to k) will grow to be larger than i and j, therefore once again breaking our condition that $j=\max (i, k)$. Therefore, the language is not a CFL.
(b) Show $\left\{a^{n} b^{n} c^{i} \mid i \neq n\right\}$ is not a CFL using Ogden's lemma:

Consider the case where we choose z to be $a^{n} b^{n} c^{n!+n}$ (where n is the constant from Ogden's lemma). We mark all the a 's and all the b 's. We first note that if v or x contain a mix of a 's and b 's, then we can see that with $i=2$, the structure of the resulting grammar is no longer correct. We now look at the case where $v=a^{\alpha}$ and $x=b^{\beta}$. If $\alpha \neq \beta$ then we can also see that the number of a 's and b 's will be different, therefore $\alpha=\beta$. We can now call $\gamma=\alpha=\beta$ and see that our final string will be of the form

$$
a^{n+\gamma(i-1)} b^{n+\gamma(i-1)} c^{n!+n}
$$

Therefore, if we set the exponents of a or b equal to c, we get that

$$
\begin{gathered}
n+\gamma(i-1)=n!+n \\
\gamma(i-1)=n! \\
i-1=\frac{n!}{\gamma}
\end{gathered}
$$

Since $\gamma \leq n$ we know that the right side divides evenly and therefore we can pick an i that satisfies this constraint, therefore our original constraint of $\left\{a^{n} b^{n} c^{i} \mid i \neq n\right\}$ is not satisfied, therefore we do not have a CFL.

CS 381/481 Homework 9

7.4.5

Let $N_{i j A}$ denote the number of distinct parse trees for substring $a_{i} \ldots a_{j}$ of the input w, starting from variable A (i.e., with A as the root of the parse tree). Note that we are using A here as a metavariable, not any particular variable in G that might have been named $A . N_{1 n S}$, where $n=|w|$ and S the starting variable of G, is the value we are interested in. We can augment the CYK algorithm to compute each $N_{i j A}$ as we compute the corresponding $X_{i j}$. That is, after computing $X_{i j}$ in CYK, we proceed to compute $N_{i j A}$ for each variable A.

Initially, we set all $N_{i j A}$ to 0 .

For the base case, we can compute the first row of N as follows. $N_{i i A}$ is 1 if $A \rightarrow a_{i}$ is a production of G. Otherwise, $N_{i i A}$ remains 0 .

To compute $N_{i j A}, j-i>0$, we look at each of the pairs $\left(X_{i i}, X_{i+1, j}\right), \ldots,\left(X_{i, j-1}, X_{j j}\right)$ the same way plain CYK did. For each pair, we look at each element of the cross product of that pair. That is, for $\left(X_{i k}, X_{k+1, j}\right)$, we consider all pairs (B, C) such that $B \in X_{i k}$ and $C \in X_{k+1, j}$. If $A \rightarrow B C$ is a production, we increment $N_{i j A}$ by $N_{i k B} \times N_{k+1, j, C}$.

When the algorithm completes, $N_{1 n S}$ would contain the solution.

For the special case when $w=\varepsilon$, this algorithm won't work, but the answer is easy. It's 1 if $S \rightarrow \varepsilon$ is a production, 0 otherwise.

Homework 9	COM S 481 Fall 2005	Kevin Canini
October 23, 2005	Intro to Theory of Computing	krc25@cornell.edu

Problem 4 (a). The set $\left\{a^{i} b^{j} c^{i} \mid i, j \geq 0\right\}$ is a DCFL because we can construct a DPDA M accepting it. Let $M=\left(\left\{q_{S}, q_{A}, q_{B}, q_{C}\right\},\{a, b, c\},\left\{A, Z_{0}\right\}, \delta, q_{S}, Z_{0}, \emptyset\right)$ be a DPDA that accepts by empty stack. We define δ as follows:

$$
\begin{aligned}
\delta\left(q_{S}, \epsilon, Z_{0}\right) & =\left(q_{A}, \epsilon\right) \\
\delta\left(q_{A}, a, A\right) & =\left(q_{A}, A A\right) \\
\delta\left(q_{A}, b, A\right) & =\left(q_{B}, A\right) \\
\delta\left(q_{B}, b, A\right) & =\left(q_{B}, A\right) \\
\delta\left(q_{B}, c, A\right) & =\left(q_{C}, \epsilon\right) \\
\delta\left(q_{C}, c, A\right) & =\left(q_{C}, \epsilon\right)
\end{aligned}
$$

Intuitively, the DPDA pushes an A onto the stack for each a it sees at the beginning of the input. Then it reads the b s without altering the stack, and then for each c it reads, it pops an A off the stack. If the number of a s equals the number of $c s$, then the stack will be empty at the end of the input.

Problem 4 (b). Assume WLOG that L is a DCFL accepted by a DPDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$, which accepts by final state. Then the DPDA $M^{\prime}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, Q-F\right)$ accepts \bar{L}. To see this, notice that running M on any input string w will put the machine in exactly one state q_{w}, since it is deterministic. Thus, after running M^{\prime} on input w it will also end in state q_{w}. This state is final in M iff it is not final in M^{\prime}, and so w is in $L(M)$ iff it is not in $L\left(M^{\prime}\right)$. So $L\left(M^{\prime}\right)=\overline{L(M)}=\bar{L}$.
Problem 4 (c). We have shown that $L_{1}=\left\{a^{i} b^{j} c^{i} \mid i, j \geq 0\right\}$ is a DCFL, and we can similarly show that $L_{2}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a DCFL. However, we know that $L_{1} \cap L_{2}=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$ is not a CFL, and thus it is not a DCFL either (since DCFLs are a subset of CFLs).
Problem 4 (d). We can show that $L_{1}=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0, i \neq j\right\}$ and $L_{2}=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq\right.$ $0, j \neq k\}$ are both DCFLs. Assume for a contradiction that $L_{1} \cup L_{2}$ is a DCFL. It follows by (b) that its complement, $\overline{L_{1}} \cap \overline{L_{2}}$ is a DCFL, and thus is a CFL. Since CFLs are closed under intersection with regular sets, we have that $\left\{a^{*} b^{*} c^{*}\right\} \cap\left(\overline{L_{1}} \cap \overline{L_{2}}\right)$ is also a CFL. But this set is equal to $\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}$, which we already know to be not context-free.

