CS 3110 Problem Set 6: PokeJouki

Assigned: April 20, 2011 Final submission due: May 5, 2011 (no extensions)
Design meetings: April 24 - April 26

1 Introduction

In this assignment, you will develop a game called PokeJouki.

There are few constraints on how you implement this project. This does not mean you can abandon what you have
learned about abstraction, style and modularity; rather, this is an opportunity to demonstrate all three in the creation
of elegant code.

You should start by carefully designing your system, and presenting this design at a design meeting where you will
meet with a course staff member to discuss your design. Part of your score will be based on the design you present at
this meeting.

On TBA, after the problem set is due, there will be a PokeJouki tournament which you are encouraged to submit
your bot programs to. There will be lots of free food, and the chance to watch your bot perform live. The winner gets
bragging rights and will have their name posted on the 312/3110 Tournament hall of fame.

1.1 Reading this document

The types referenced in this document that are not default in OCaml are defined in definitions.ml. Constants
follow the following naming convention: they begin with a lowercase c, and the rest is a descriptive name of the
constant in all caps. For example, cNUM_ETHER specifies the initial number of ether in the inventory. The reason for
this mysterious c in front of all the constants is that OCaml actually doesn’t allow value names to begin an uppercase
letter - only type constructors can do that. For all chance based constants, the value given is the percent chance that
the relevant event occurs. For instance, if cWAKE_UP_CHANCE is 10, then there is a 10% chance to wake up. It will help
to have some of the documents open in order to reference them as you read along.

http://www.cs.cornell.edu/Courses/cs3110/archive/tournaments.html

1.2 Updates to Problem Set
Updates to the problem set will be marked in red.

e April 30, 2011 - Revive can only be used on fainted steammon (not steammon with only less than half HP).
Added new GUI commands, see section 4.

e April 25, 2011 - Added rules regarding handling bad teams - see section 2.10. Minor word changes. Clarified
item usage. Made usage of the term “steammon’ ubiquitous.

1.3 Point Breakdown

e Design meeting — 5 pts

Game — 40 pts
Bot — 35 pts

e Documentation and design — 5 pts

Written problem — 15 pts

2 Game Rules
2.1 General Rules

The game begins in the draft phase. The player chosen to have the first pick will select a steammon. Then, the next
player gets 2 picks. This process continues until each player has chosen cNUM_PICKS steammon. Each player then
selects a starter steammon simultaneously, and then the battle phase will commence. During each turn of the battle
phase, each player will take an action, with the ultimate goal of making the other players team faint. The challenge is
figuring out the best strategy to do that!

2.2 The Steammon

The steammon type specifies all of the attributes associated with a Steammon. The Steammon has up to 2 steamtypes,
four attacks, stats, status changes, and modifiers.

2.2.1 Steamtypes

Steamtypes specify the specialty of a Steammon. Certain types are strong against others, taking reduced, or even zero
damage from certain attacks. Steammon that use an attack that has the same steamtype as one of its own steamypes
will do cSTAB_BONUS (SameTypeAttackBonus) times more damage.

2.2.2 Attacks

The primary instrument of battle will be attacks. Each attack has several characteristics, which change their effective-
ness in battle.

e Steamtype —Each attack has an element. The element determines whether an attack will do increased damage to
the opponent, or end up not affecting the opponent at all.

e PP - Each attack has a certain amount of Power Points available to it. This number indicates the number of times
that a steammon can use an attack, and is usually an indicator of how powerful the attack is. More powerful
attacks will have less PP so you need to watch carefully how often you use each attack.

e Power — This number is used to determine how much damage the attack will do.

e Accuracy — This number is used to determine how often an attack will hit. The accuracy represents the proba-
bility of hitting the opponent.

e Critical Hits — Each attack has a certain chance to critical hit. A critical hit will do cCRIT_MULTIPLIER times
more damage than a regular attack and be a lucky way to change the tide of battle.

e Effects — Some attacks will have an effect associated with them. These include the ability to inflict status effects

on enemies, or boost your own steammons abilities. An effect can only occur if the attack hits the opponent.

2.3 Stats

Each steammon has an attack, defense, and speed stat. The attack stat determines damage dealt, defense determines
damage taken, and speed determines which steammon gets to attack first.

2.4 Status

e Paralyzed — When a steammon is paralyzed, there is a chance that the steammon will not attack that turn,
cPARALYSIS_CHANCE. The speed of a paralyzed steammon is lowered by cPARALYSIS_SLOW. A steammons

: : . steammon.speed
new speed is determined by the formula: =27 crs st o

e Poisoned — When a steammon is poisoned, it will take extra damage at the end of each turn. It takes
cPOISON_DAMAGE*(steammon.max_hp)

e Asleep — A sleeping steammon is unable to attack. However, prior to each attack, the steammon has cWAKE_UP_CHANCE
to wake up and execute its attack.

e Confused — When a steammon is confused there is cSELF_ATTACK_CHANCE that the steammon will attack it-
self instead of the opponent. If a steammon attacks itself, it will attack itself with an attack that has power
cSELF_ATTACK_POWER. There is cSNAP_OUT_CHANCE that the steammon will no longer be confused prior to the
attack. Confusion is removed when the steammon is withdrawn.

e Frozen — When a steammon is frozen, it is unable to attack. There is cDEFROST_CHANCE that the steammon will
defrost at the end of its turn.

Note: Fainted steammon lose all status effects when they are revived.

2.5 Modifiers

Each steammon has the ability to have its stats raised from items and attack effects. These will allow your steammon
to become more effective in battle. However, be careful, if a steammon is switched out, it will lose all of the modifiers,
and return back to its base stats. Each modifier can be raised or lowered 3 levels. When a stat has a modifier on it,
the steammons base stat is treated as c(attribute) UP(level) or c(attribute) DOWN(level) depending on which stat is
modified and what level that modifier currently is.

2.6 ltems

In addition to a set of steammon, each team is given an inventory. Each player can choose to use an item instead of
attack for a turn.

e Ether — Restores 5 PP to each attack of the target Steammon
e MaxPotion — Restores a Steammon back to full HP. This item cannot revive a fainted steammon.

e Revive — Restores a fainted Steammon back to half of its maximum HP. Revive can only be used on fainted
steammon.

e FullHeal — Removes all status effects from the target Steammon.

XAttack — Increases a Steammons Attack modifier by 1.

XDefense — Increases a Steammons Defense modifier by 1.

XSpeed — Increases a Steammons Speed modifier by 1.
e XAccuracy — Increases a Steammons Accuracy modifier by 1.

A note on targets: The X items (XAttack, XDefense, XSpeed, and XAccuracy) can only be used on the currently
actively picked steammon. If the target is a steammon that isn’t the currently actively picked steammon, it should still
be considered a valid command and the game server should still apply the item on the currently actively picked
steammon, despite the target being wrong.

2.7 Game Flow: Initiation Step

Both players connect to the server, at which point the server calls initgame, initializing the game. This includes:
reading the files attack.txt and steammon. txt to obtain the information about the steammon that will be in play
for this game, and selecting the player that will get first pick.

2.8 Game Flow: The Draft Step

The player who is given first pick selects a steammon out of the pool of steammon. Then, the second player picks two
steammon. This process proceeds in rounds with the first pick of the round alternating until cNUM_PICKS steammon
have been chosen. This creates a picking sequence of 1 for the first team, 2 for the second team, 2 for the first team,
and continuing on until cNUM_PICKS is picked for the first team, and then 1 for the second team. The server will send
out PickRequest to the team that is going to pick, and DoNothing to the team that is to wait. However, the Al will
never know that it was sent a DoNothing, and will only recieve Request commands from the server.

Each steammon can be on at most one team. The attacks for each Steammon are the same. For instance, if Squirtle
and Horsea both know Water Gun, both of their Water Guns will have the same characteristics, though they will not
share PP, or any other characteristics that would be specific to a particular steammon. The pool will be balanced
so that the player with first pick does not get an unfair advantage. When the Draft Step is over, the server sends
StarterRequests to both teams, and then the Battle Phase begins!

2.9 Game Flow: The Battle Phase

During the Battle Phase, the server will only send out StarterRequests and ActionRequests. StarterRequests mean
that the current active steammon has fainted, and the team must select a new battling Steammon. Otherwise, only
ActionRequests are used until the game is over.

The teams are allowed to use items, switch steammon, and use attacks during this phase. The priority of these
actions is the order they will be discussed.

2.9.1 Switch Steammon

The player specifies one of his non-fainted steammon to switch with his current active steammon. The opposite player
will attack the new active steammon after the switch, protecting the old active steammon. A steammon that is switched
out loses all of its previous modifiers, and only loses confusion.

2.9.2 Useltem

If a player wants to use an item, they must have at least one of that item in their inventory, and after use, they lose one
copy of the item. Item descriptions are specified above.

2.9.3 UseAttack

The player specifies the attack that it wants to use. If both players choose to attack, the steammon with the higher
speed will attack first. If both steammon have the same speed, the game will pick an arbitrary team to attack first. The
attack will hit the other steammon with probability that is represented by its accuracy. An attack may not go through
for reasons other than a miss. If a steammon is Frozen or Asleep, it is unable to attack. If a steammon is confused
or Paralyzed, there is a chance that the attack may fail. If the attack hits, the attacks effect may also trigger, with the
chance associate with the effect.

The Formula for attack damage is:

Attack Power x AttackersAttack x CritE f fect « ST ABBonus x Steamtype Multiplier
OpponentsDef

o AttackPower — the power rating for the attack
o AttackersAttack — the attack rating for the steammon
e CritEffect — If a critical hit occurs, this is cCRIT_MULTIPLIER, otherwise, this is 1

e If a steammon uses an attack that has the same element as one of its steamtypes, STABBonus is cSTAB_BONUS
otherwise, it is 1.

e OpponentsDef — is the Defense stat of the defending steammon

e SteamtypeMultiplier — This is determined by the attacking steammon’s attack type and the defending steammons
types. For steammon with 2 types, use the product of the results on each type. Use this chart to determine it:

Defending type
—_ = t
m S 2 o= =
== i w2 —_—
tef8 SEB3iSoilFr
T IE0l “fladicoEs0aad
Normal .
Fire B
Water |
Grass B
H
||

i

& Ice

+ Fighting
N Poison

Ground

Psychic
Bug
Rock
Ghost
Dragon
Dark
Steel

Hx2 x> [x0

Remember, a Steammon may have up to two types, so both types need to be considered for this calculation.
Attacks may also have effects. These effects are determined by their name. Nada is an attack with no effect.

Attackin

2.10 Bad Teams

The game server must also handle bots that do not send valid responses or any responses at all. This section describes
the rules the game server should use when dealing with bad teams.

2.10.1 Invalid Commands

If the game server receives an invalid command, the game should treat it as if the bot had sent no command for that
step. See the next section for information on how to handle a nonresponse.
An invalid command includes, but is not limited to:

e Commands that are not of the form Action of action.
e Attempting to use an item that is not in the team’s inventory.
e Sending anything other than PickSteammon in response to a PickRequest.

e Sending anything other than SelectStarter in response to a StarterRequest.

e Using a UseItem action that has a target that is not a Steammon in the team.

e Using a UseAttack action that is not a valid attack.

2.10.2 No Response

If a bot sends no valid action within cUPDATE_TIME, the action for the team that is passed into Game .handle_step
will be DoNothing. The game logic should continue running the game on behalf of the team. Here is the logic the
game should use for each game phase:

e For a PickRequest, the game should pick an arbitrary available steammon.
e For a StarterRequest, the game should pick an arbitrary non-fainted steammon for the team.
e for an ActionRequest, the game should not perform any action for the team, but the team can still be affected

by the opposing team’s actions.

3 Communication
3.1 Client-Server Framework

PokeJouki makes use of a client-server framework. Under this framework, the game server is responsible for keeping
track of the game state, applying the game rules, and so on. Clients (i.e., players) are run as an entirely separate
process and can keep track of whatever information they want, but need to send messages to the server to perform
game actions or receive information.

Players communicate with the game server by sending information over channels. The protocol for messages is
defined by the type Action in definitions.ml.

There are five types of messages defined in the protocol:

e Control messages, which deal with starting and ending the game

o the DoNothing message, which is used by the server to correct mistakes that occur in the game
e Action messages, which the team uses to specify what it wants to do

e Request messages, which allow the server to tell the players what its next action choice is.

See the sections below for details on the three types of messages.

3.2 Communication as a client
3.3 Control Messages
3.3.1 Control Quick Reference

We have primarily taken out the need for the player to connect to the client. The player just needs to be able to respond
when given a Request type.

3.3.2 Action Quick Reference

e SelectStarter- This is used in response to a StarterRequest. A player chooses which steammon they would like
to send into battle. This occurs at the beginning of the battle phase or when the previous steammon fainted.

e PickSteammon- This is used in response to a PickRequest. The team specifies which steammon from the pool
it wants to select for its team.

e SwitchSteammon- This is used in respons to an ActionRequest. The player recalls their current battle steammon
and selects another one to send out.

e Useltem - This is used in response to an ActionRequest. The player uses an item, on the target steammon.

e UseAttack - This is used in response to an ActionRequest. The player commands his battle steammon to use the
specified attack.

4 GUI
4.1 GUI Client

In order to view the game, you will have to set up a GUI client program. The client has been coded for you, and is
located in the client directory. The client renders the game using Java and Swing. This module will be sufficient for
simple rendering of the game, though you are welcome enhance it for karma if you wish. To use the GUI, you must
have Java.

The game server is responsible for sending graphical update messages to the GUI, as described below. The game
server will listen for clients to send the updates to throughout the game. However, if a GUI connects halfway through
the game, it will have missed the message that initialize the board. So be sure the GUI connects before the game starts
if you want to be able to see everything. In other words, start the process for the GUI before you start the processes
for the teams.

4.2 Sending messages to the GUI

We have provided a simple module called Netgraphics with functions to send graphical updates. The functions are
specified in netgraphics.ml. Note that the init function is called by the Server module, and sendUpdates is
called reguarly by the Server module. So in order to send a graphics update to the clients, the game module calls
Netgraphics.addUpdate with the appropriate update type. The one exception to this is that the InitGraphics up-
date must be sent by itself, so the game module should send this update directly by calling Netgraphics.sendUpdate.

4.3 Graphics Commands

Arguments Meaning

InitGraphics Tell the GUI client to initialize the graphics in preparation for
anew game starting.

UpdateSteammon species, hp, maxhp, team Update (or add) steammon by species to given team

SetChosenSteammon species Set the currently active Steammon (team looked up by species
name)

NegativeEffect msg, team, hp Show a negative effect for team with message msg and the
amount of damage hp (no damage can be indicated by 0 hp)

PositiveEffect msg, team, hp Show a positive effect for team with message msg and the
amount of bonus hp (no bonus can be indicated by 0 hp)

Message msg Display a status message msg to the GUI console.

SetFirstAttacker team Sets which team attacks first in the round. Must be called

before the NegativeEffect and PositiveEffect messages
are queued for the round.
SetStatusEffects species, statuses Sets the currently active statuses for the steammon

A note on negative and positive effects: Effects should be shown for: hits, misses, heals, and special attacks (e.g.
freezes). Misses can be considered a negative effect on the targeted team, with 0 hp damage. So if Red team attacked
Blue team and missed, the update would be NegativeEffect (¢ ‘Miss’’, Blue, 0).

5 Provided source code

Many files are provided for this assignment. Most of them you will not need to edit at all. In fact, you should only edit
and/or create new files in the game and bot directories (plus any edits you need to make to the compilation scripts).
Here is a list of all the files included in the release and their contents.

buildx*.bat
game/constants.ml
game/definitions.ml
game/game .m1i
game/game .ml
game/util.ml
game/netgraphics.mli
game/netgraphics.ml
game/server .ml
shared/connection.mli
shared/connection.ml
shared/thread_pool.mli
shared/thread _pool.ml
team/team.ml
team/babybot.ml
game/attack.txt
game/steamon. txt

5.1 Code Structure

Build scripts for the game server, teams, and GUI client (see Section 6)
Definitions of game constants

Definitions of game datatypes

Signature file for handling actions, time, rules, and the game state
Stub file for actions, rules, and time

General use helper functions

Signature file for sending updates to the GUI client
Implementation of sending updates to the GUI

Starts the game server and deals with communication

Signature file for connection helper module

Implementation of connection helper module

Signature file for thread pool helper module

Implementation of thread pool helper module

Basic framework for a client to interact with a game server

Stub for a team Al

Attacks for the steammon

Steammon for the game

To understand how to implement the game, you must first understand how the code we have provided you operates.
The crucial aspect to understand is the relation between the Server module and the Game module. The server module
deals primarily with receiving connections from the teams, and calls the Game module for all issues related to the
game rules. You do not need to modify the Server module, graphics commands, or GUI client. Your modifications and
additions will take place in the Game module, State module, and any other modules you choose to add.

5.2 Server

At a high level, server.ml does the following things:

1.
2.
3.

4.
5.

Calls Netgraphics.init, which accepts connects from GUI clients

Waits until for enough teams to join the game (see Section 6.1 for more details)

Repeatedly calls Game . handleStep with the responses of the clients, outputting the state and request to the

client.

Uses the Actions of team to call Game .handle_step.

Repeatedly sends the graphics updates to the GUIL.

You will need to think carefully about how you design and implement the game to meet the Server module’s
expectations.

5.3 Game

All the functions in the Game module referred to above are specified in game .m1i.
Your design may require you to add or modify the type declarations or functions we have provided.

5.4 State

We strongly suggest that you have a State module in your final design, as the distinction between game rules and
game state is significant. In other words, you should NOT put all of your code in the Game module.

6 Running the game

You will need four command prompts to run the game.

6.1 Game Server

From ps6/game, run build_game. bat to build the game server. In this command prompt, run game . exe.

6.2 GUI

The GUI is already written for you in Java. It is distributed in a jar file called gui_client. jar. The GUI needs the
data folder for game assets. To run the GUIL, just run the jar file (from the command line, java -jar gui_client.jar).
Enter your Game Server connection information (by default it is localhost at port 10501), and press the Connect but-
ton.

6.3 Team

From ps6/team run build_team.bat teamname (or build_team.sh teamname for Mac/Linux systems) to build
the bot in the file bot/teamname.ml. Next, run teamname.exe localhost 10500. Run this command in two
separate command prompts, and watch the magic happen!

6.4 The Whole Game

7 Your tasks

There are several parts to the implementation of this project. Make sure you spend time thinking about each part before
starting. Start on this project early. There are many things you will have to take into consideration when designing the
code for each section.

7.1 Design meeting

Your first task is to create a design for your PokeJouki implementation and meet with the course staff to review it. Each
group will use CMS to sign up for a meeting, which will take place between April 24 and April 26. If you are unable
to sign up for any of the available time slots on CMS, contact the course staff, and we will try to accommodate you.

At the meeting, you will be expected to explain the design of your system, explain what data structures you will
use to implement the design, and hand in a printed copy of the signatures for each of the modules in your design. You
are also expected to explain your initial thoughts about strategies for your player bot. In designing module interfaces,
think about what functionality needs to go into each module, how the interfaces can be made as simple and narrow as
possible, and what information needs to be kept track of by each module. Everyone in the group should be prepared
to discuss the design and explain why the module signatures are the way they are. We will give you feedback on your
design.

7.2 Implementing the game

Your second task is to implement the PokeJouki game in the file game/game .m1, and any files you choose to add.
Note that you should add files only to the game and team directories. You must implement the rules as described in
Section 2 and handling of actions as described in Section 3.3. You must also make sure that the actions units take are

10

rendered in the graphic display using the interface detailed in Section 4. You can use the sample team program we
provide to test your game, but for full testing coverage you will need to write your own tests.

7.3 Designing a bot

Your third task is to implement a bot to play the game. A very weak bot that you can use as a basis for your bot code
is provided.

There are many different strategies for building a good bot. This is your chance to be creative and have fun creating
a good Al

We will provide an online server running our implementation of the game that you will be able to connect to,
allowing you to see the game in action, test that your bot works correctly, and try your bot against other people’s
bots. We will also provide some staff bots to test against, at our discretion. Further information on the server will be
provided soon.

In the next couple weeks, we will release stronger bots for you to test your own against. Use this opportunity to
evaluate your own bot, so you can create a bot that will do well at the tournament

7.4 Documentation

Your final task is to submit a design overview document for this project. Since this project is both large and quite
open-ended regarding the way one may choose to implement it, documentation becomes even more important.

Your design overview document should cover both your implementation of the game itself and the bot you created.
In discussing your bot, you should make note of what strategies you experimented with, and what you found to be
most effective.

7.5 Things to keep in mind

Here are some issues to keep in mind when designing and implementing the game:

¢ You need to make a good design. This project is both large and complicated; without spending time on making
a design that is both solid and complete, you will very quickly get bogged down when you go to implement
things. The importance of design cannot be overemphasized. Trying to write code before your have your design
is a recipe for disaster on a project of this magnitude.

Before writing any code, you should have a very clear idea of all of the following:

— What concurrency issues exist and how to deal with them

What information needs to be kept track of to fully represent the game

How that information will be stored and accessed efficiently

What the interface between your modules will be

What invariants will hold between your modules

— Which modules will enforce those invariants

e Think carefully about how to break up your program into loosely coupled modules. The program will be
complex and difficult to debug unless you can develop modules that encapsulate important aspects of the game.
Design the interfaces to these modules carefully so that you can work effectively with your partner and can do
unit testing of the modules as you implement.

e Make sure that what is going on in the game matches what is going on in the graphics. Updating one does
not automatically update the other. If you are watching the game and something seems to go wrong, remember,
it could just be the code controlling the output to the screen. Moreover, just because the graphics look correct
doesn’t mean the game is acting properly. It would behoove you to maintain some sort of invariant between the
status of the game and the status of the graphics.

11

http://www.cs.cornell.edu/courses/cs3110/2008fa/hw/overview-requirements.html

e Problems in the game might actually be problems with the bots. If you are using your own bots to test the
actions and something seems wrong, the bots could just as easily be at fault.

e Implement and test the actions one at a time. Don’t try to implement all of the actions and test them with one
single bot. Start with easier actions and work up to the harder ones.

e Remember to finish the game in time to write a good bot. The bot part of the project is worth as much as
the game part, so don’t put off the bot part until the end. And unlike in past semesters, we WILL be grading it
based on how well it performs. It will be VERY hard to get full credit on this part.

7.6 Final submission

You will submit:

1. A zip file of all files in your ps6 directory, including those you did not edit. We should be able to unzip this and
run the build_game.bat script to compile your game code, and the build_team.bat script to compile your
bot code (i.e., you should modify the scripts to include all necessary files). This should include:

e your game implementation

e your bot, named bot .m1 in the team directory along with any files it needs to build and run
It is very important that you organize your files in this manner, as it greatly simplifies grading.
2. Your documentation file, in .pdf format.

Although you will submit the entire ps6 directory, you should only add new files to the game and team folders; the
other folders should remain unchanged. If you add new .ml or .mli files, you should add them to the compilation
scripts. Note again that we expect to be able to unzip your submission and run the build_game.bat script in the newly
created directory to compile your code without errors or warnings. Submissions that do not meet this criterion will
lose points.

8 Tournament

On TBA, after the problem set is due, there will be a PokeJouki tournament which you are encouraged to submit your
bot programs to. There will be lots of free food, and the chance to watch your bot perform live. The winner gets
bragging rights and will have their name posted on the 312/3110 Tournament hall of fame.

9 Written Problem

In addition to the game and bot implementation tasks described above, this project also includes a written problem on
amortized complexity. This written question should be submitted to CMS, in .pdf format.

Recall the binary search algorithm. The time required for finding an element is O(log n), but to add a new element,
we require O(n) time in the worst case.

Uber-hacker Zen “Kode” T-Rex has come up with a new data structure: the Zardoz array. This data structure sup-
ports two operations, SEARCH and INSERT. We wish to support these operations on a collection of n total elements.
Define k = [log,(n + 1)]. We denote the binary representation of n as ng_1ng—_2...ng. A Zardoz array has k sorted
arrays, Ag, Ay, ..., Ax_1. Each A; has space for 2¢ elements. If n; = 0, then A; contains 0 elements, and if n; = 1,
then A; contains 2° elements. Note that an array can’t be partially filled. We also note that the total number of elements
in a Zardoz array is still n, since Zf;ol n;2° = n. Finally, while each A; is sorted, we do not enforce any relationship
between the elements of different arrays.

1. Describe how to perform SEARCH on a Zardoz array. Analyze its worst-case running time.

2. Describe how to perform INSERT on a Zardoz array. Analyze its worst-case running time, and, using the
potential method, analyze its amortized running time. Your amortized running time must be better than O(n),
that is o(n).

12

http://www.cs.cornell.edu/Courses/cs3110/archive/tournaments.html
http://en.wikipedia.org/wiki/Binary_search_algorithm

	Introduction
	Reading this document
	Updates to Problem Set
	Point Breakdown

	Game Rules
	General Rules
	The Steammon
	Steamtypes
	Attacks

	Stats
	Status
	Modifiers
	Items
	Game Flow: Initiation Step
	Game Flow: The Draft Step
	Game Flow: The Battle Phase
	Switch Steammon
	UseItem
	UseAttack

	Bad Teams
	Invalid Commands
	No Response

	Communication
	Client-Server Framework
	Communication as a client
	Control Messages
	Control Quick Reference
	Action Quick Reference

	GUI
	GUI Client
	Sending messages to the GUI
	Graphics Commands

	Provided source code
	Code Structure
	Server
	Game
	State

	Running the game
	Game Server
	GUI
	Team
	The Whole Game

	Your tasks
	Design meeting
	Implementing the game
	Designing a bot
	Documentation
	Things to keep in mind
	Final submission

	Tournament
	Written Problem

