
COM S 213 – Fall 2004
Assignment #4

The Used Car Dealership – Expands!
Due September 23, 2004

The main purpose of this assignment is to experience polymorphism—the ability to
associate many meanings to one function name by means of virtual member functions.

Our favorite used car dealership is going to expand. Selling cars isn’t nearly gratifying
enough, this dealership will be selling Bicycles and Boats as well. This dealership
would like to keep an inventory of its vehicles (Bikes, Boats and Cars), and would like to
store the following information about each:

Bicycles Boats Automobiles
Make
Model
Year
Price
Brake Type
Tire Size
of Speeds

Make
Model
Year
Price
Engine Type
Length
Registration Number

Make
Model
Year
Price
Mileage
Has Antilock Breaks?
Has Four Wheel Drive?

Simply, you are to write a program which allows these items to be stored in a Dealership
class in the form of a dynamic array (similar to Assignment #3) which will allow the
inventory to be stored and printed on demand.

Tasks

You will need to abstract out the common fields associated with each of the vehicles
above into a base class called Vehicle. You will have three classes derived from the
Vehicle class: Boat, Bicycle and Automobile. Finally, you will need a
Dealership class similar to the class you wrote in Assignment #3.

For this assignment I will spell out how I’d like these classes designed—in future
assignments you will need to do this part yourself!

Here are the four classes:

Class Vehicle
MEMBER FUNCTIONS

Vehicle() Constructor, allows member fields below to be
initialized when the object is created by taking
parameters.

printVehicleType() Pure virtual, prints out (through implementation in
each of the derived classes) where the item is a “Boat”,
“Bicycle” or “Automobile”

printDescription() Virtual, used to print out make, model, year and price
on one line

MEMBER VARIABLES
Make What car manufacturer builds this vehicle?
Model What model of car is this vehicle?
Year What year was this vehicle produced for?
Price What is the asking price of this vehicle?

Class Boat
MEMBER FUNCTIONS

Boat() Constructor—takes initial values for all member
variables (including member variables from the base
class) and puts those initial values in the right member
variables.

printVehicleType() Prints out “Boat”
printDescription() Calls Vehicle::printDescription to print out make,

model, year, and cost. Then prints out specific
information about the boat (length, engine type and
registration number)

MEMBER VARIABLES
Length How long is this boat?
Engine What type of engine does the boat have?
Registration What is the boat’s call numbers/letters?

Class Bicycle
MEMBER FUNCTIONS

Bicycle() Constructor—takes initial values for all member
variables (including member variables from the base
class) and puts those initial values in the right member
variables.

printVehicleType() Prints out “Bicycle”
printDescription() Calls Vehicle::printDescription to print out make,

model, year, and cost. Then prints out specific
information about the bicycle (# of speeds, brake type
and tire size)

MEMBER VARIABLES
Speeds How many speeds does this bike have?
mBrakeType What kind of brakes does this bike have?
TireSize How big are the tires?

Class Automobile
MEMBER FUNCTIONS

Automobile() Constructor—takes initial values for all member
variables (including member variables from the base
class) and puts those initial values in the right member
variables.

printVehicleType() Prints out “Automobile”
printDescription() Calls Vehicle::printDescription to print out make,

model, year, and cost. Then prints out specific
information about the car mileage and whether or not
the car has antilock brakes and whether or not the car
has four wheel drive)

MEMBER VARIABLES
Mileage How many miles are on the car
ABS A bool value (either true or false) which states if the

vehicle has antilock brakes!
4WD A bool value (either true or false) which states if the

vehicle has four wheel drive.

Finally, we have the Dealership class:

Class Dealership
MEMBER FUNCTIONS

Dealership(size) Constructor—takes one parameter which is the size of
inventory to be allocated. You do not need a default
constructor.

addToInventory() Takes a Vehicle pointer as sole argument, adds it to the
next open slot.

displayInventory() Displays entire inventory
freeInventory() Frees all dynamically allocated objects.

MEMBER VARIABLES
Vehicles An array of pointers to the Vehicle class.
numVehicles The maximum number of vehicles in our inventory.
VehicleIndex The number of vehicles added to the inventory.

You are to construct the classes above such that your main() program can consist of this
logic:

int main (int argc, char * const argv[]) {
 // Declare a dealership
 Dealership ronsVehicles(10);

 // Add vehicles
 ronsVehicles.addToInventory(new

Automobile("Honda","Accord","1984",6999.99,150000,false,false));
 ronsVehicles.addToInventory(new
Automobile("Dodge","Caravan","1990",7999.99,124001,false,false));
 ronsVehicles.addToInventory(new Automobile("Ford","F-
150","1994",4999.99,89934,false,true));
 ronsVehicles.addToInventory(new
Automobile("Mercury","Mountaineer","2003",40999.04,10554,true,true));
 ronsVehicles.addToInventory(new
Bicycle("Huffy","BMXcellent","2003",69.99,10,"top pull",26));
 ronsVehicles.addToInventory(new
Bicycle("Schwinn","Varsity","1982",129.99,10,"side pull",27));
 ronsVehicles.addToInventory(new
Bicycle("NoBrand","MyFirstBike","2002",29.99,1,"coasting",16));
 ronsVehicles.addToInventory(new Boat("Sunfish","Sail-
1","2000",1299.99,15,"none","NY S45311"));
 ronsVehicles.addToInventory(new Boat("Jeep Boats","Fisherman's
Dream","1998",10999,29,"Binford XL2","NY JU71123"));

 // Display inventory
 ronsVehicles.displayInventory();

 ronsVehicles.freeInventory();
 return 0;
}

and the output will look something like this:

DEALER INVENTORY
===
1. AUTOMOBILE
1984 Honda Accord $6999.99
150000 miles

2. AUTOMOBILE
1990 Dodge Caravan $7999.99
124001 miles

3. AUTOMOBILE
1994 Ford F-150 $4999.99
89934 miles , 4 Wheel Drive

4. AUTOMOBILE
2003 Mercury Mountaineer $40999
10554 miles , Antilock Brakes, 4 Wheel Drive

5. BICYCLE
2003 Huffy BMXcellent $69.99
10 speed, top pull brakes, 26 inch tires

6. BICYCLE
1982 Schwinn Varsity $129.99
10 speed, side pull brakes, 27 inch tires

7. BICYCLE
2002 NoBrand MyFirstBike $29.99
1 speed, coasting brakes, 16 inch tires

8. BOAT
2000 Sunfish Sail-1 $1299.99
15 feet, none engine, registration: NY S45311

9. BOAT
1998 Jeep Boats Fisherman's Dream $10999
29 feet, Binford XL2 engine, registration: NY JU71123

Hints

There’s some trickiness in the Dealership class while the other classes should be
fairly straight forward.

First, you need to store an array of objects which represent the inventory, but you will be
putting an instance of one of three derived classes in each array element. Remember that
an array must be declared to be of one type only. So, to do this, you will need to create
an array of pointers to the base class (Vehicle) to store the inventory. To declare an
array of pointers, you would use the following expression:

Vehicle **arrayOfPointers;

And to allocate memory to it (dynamically), you would use the following expression:

arrayOfPointers = new (Vehicle *)[size];

where size is an integer representing the size of the array you wish to dynamically
allocate.

The second hint is that you will be using a constructor to do the dynamic memory
allocation in the Dealership class. Since a constructor can never be called directly
once the object is created, you won’t need logic to check to see if there was previously
allocated memory in this constructor. This makes the constructor much, much simpler.
Since a constructor cannot return an error code, it also means that you cannot check to
see if the memory allocation failed and do anything to let the rest of your program know
that a problem occurred. Because of this you must make sure that you always check to
see if the dynamic array pointer is NULL before accessing it elsewhere in your program.
Since the allocation is supposed to occur when the Dealership class is created, you
can terminate your program if the dynamic array is ever found to be a NULL pointer.

The third hint is that your freeInventory() method must remember to free all
memory that was dynamically allocated. Remember that the pointers to objects stored in
the inventory array were dynamically allocated as well as the array itself.

This assignment is obviously the most complex assignment we’ve done, but it also the
most important. The concept of polymorphism is one of the main reasons for having an
object oriented language so it is important that you understand it!

Please come to office hours or make an appointment if you need me to clarify anything in
this assignment!

