
Discussion 10:
Shared Buffers

CS 2110, SP24

Bounded Queue & Ring Buffers

Bounded Queue ADT (BoundedQueue.java)

Queue (FIFO) with a fixed capacity.

Operations:

•put() – inserts only if capacity is not met.

•get() – removes oldest value if the queue is not empty.

•isFull()
•isEmpty()

Ring Buffer Data Structure

• Implements Bounded Queue

•Elements stored in fixed-capacity
array
• Additional state: head pointer, size

0

1

2

3

4

5

Head

Next available

Size = 3

Ring Buffer Data Structure

0

1

2

3

4

5

Head

Next available

Size = 3

0

1

2

3

4

5

Head

Next available

Size = 4

Put: store in next available index (requires size < capacity)
• (head + size) % capacity

Ring Buffer Data Structure

0

1

2

3

4

5

Head

Next available

Size = 4

0

1

2

3

4

5

Head

Next available

Size = 3

Get: advance head, return previous value (requires size > 0)

Review: Iterators

Java Iterator

•Generic interface expressing
Iterator ADT

•Methods:
• boolean hasNext();
• T next();

Usage:

Iterator<String> it = …;

while (it.hasNext()) {

 String s = it.next();

 // Do something with s

}

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Iterator.html

Enhanced for-loops

List<String> names = …;

for (int i=0; i<names.size(); ++i)
{

 String name = names.get(i);

 …
}

List<String> names = …;

for (String name : names) {

 …
}

… are translated into while loops
("syntactic sugar")
List<String> names = …;

for (String name : names) {

 …
}

List<String> names = …;

Iterator<String> it =
 names.iterator();

while (it.hasNext()) {

 String name = it.next();

 …
}

Iteration interfaces

Iterable<T> - RingBufferBQ

• "Something that can be iterated
over"

•Can use in an enhanced for-loop

•Yields Iterators

•Iterator<T> iterator();

Iterator<T> - RingBufferBQIterator

•Helper class for actually doing
the iteration

•Mutable (one-time use) - need a
new one for each loop

•Yields values

•boolean hasNext();
•T next();

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Iterator.html

Nested classes

•Classes declared inside other classes (usually a "helper" of some kind)

• Static: Outer class acts as a namespace, can hide class from other
potential clients

•Non-static ("inner classes"): Inner class objects are attached to an
outer class instance
• Can only be created from an instance of the outer class
• Can access outer object's fields and methods
• Common choice for Iterators

• Enables more encapsulation (private fields)

Shared Buffers

Producer/consumer pattern (example)

•One or more fry cooks slides
new fries onto the “ready” shelf
• Producer

•One or more cashiers take fries
from the “ready” shelf to
complete orders
• Consumer

• Shelf can only hold so many fries
• Bounded queue

RingBufferBQ.main()

A single shared buffer

Producer Threads:
Put numbers 0..9 into buffer

Consumer Threads:
Sum 10 values from buffer

Spin loop

while (COND) { /* spin */ }
where COND is true if the resource shouldn’t be accessed.

Note: Do NOT do this!!!!! (outside of this discussion section)

•We will see why this is a bad idea very soon.

