Introduction

to GUIs
(Graphical User
Interfaces)

Lecture 18
CS211 — Summer 2008

Interactive Programs

input
* “Classic” view of computer
programs: transform inputs to
outputs, stop
output
* Event-driven programs: @
interactive, long-running ) output
= Servers interact with clients :1\?:;1s<4 events >
= Applications interact with

user(s) program

GUI Motivation

* Interacting with a program
= Program-Driven
+ Statements execute in sequential, predetermined order
+ Use keyboard or file I/0O, but program determines when that happens
+ Usually single-threaded
= Event-Driven
+ Program waits for user input to activate certain statements
+ Typically uses a GUI (Graphical User Interface)
+ Often multi-threaded
* Design...Which to pick?
= Program called by another program?
= Program used at command line?
= Program interacts often with user?
= Program used in window environment?

* How does Java do GUIs? 3

Java Support for Building GUIs

 Java Foundation Classes * Our main focus: Swing
= Classes for building GUIs = Building blocks of GUIs
= Major components + Windows & components
+ awt and swing + User interactions
+ Pluggable look-and-feel support = Built upon the AWT (Abstract
+ Accessibility API Window Toolkit)
+ Java 2D API + Java event model

+ Drag-and-drop Support
+ Internationalization

* Java’s support for cross-platform GUIs is one of its main selling
points

Java Foundation Classes

* Pluggable Look-and-Feel Support
= Controls look-and-feel for particular windowing environment
= E.g., Java, Windows, Motif, Mac
 Accessibility API
= Supports assistive technologies such as screen readers and Braille
* Java 2D
= Drawing
= Includes rectangles, lines, circles, images, ...
* Drag-and-drop
= Support for drag and drop between Java application and a native
application

* Internationalization
= Support for other languages

GUI Statics and GUI Dynamics

« Statics: what's drawn on the screen
= Components
+ buttons, labels, lists, sliders, menus, ...
= Containers: components that contain other components
+ frames, panels, dialog boxes, ...
= Layout managers: control placement and sizing of components

* Dynamics: user interactions
= Events
+ button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event
= Helper classes
+ Graphics, Color, Font, FontMetrics, Dimension, ...




Creating a Window

import javax.swing.*

public class Basicl {

public static void main(String[] args) {

//create the window

JFrame f = new JFrame('Basic Test!™);
//quit Java after closing the window
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200, 200); //set size in pixels
f.setVisible(true); //show the window

| e B Tt

Creating a Window Using a Constructor

import javax.swing.*;
public class Basic2 extends JFrame {

public static void main(String[] args) {
new Basic2();

public Basic2(Q) {

setTitle("Basic Test2!'); //set the title
//quit Java after closing the window
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(200, 200); //set size in pixels
setVisible(true); //show the window

A More Extensive Example

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton(“Push Mel");
private Jiabel label = new JLabel(“Count: " + count);
public intro

etDe:

0O {
efaul tCloseOperation(JFrame EXIT_ON_CLOSE):
Setlayout(new Flowlayout(FlonLayout LEF); /7%et layout manager
add(nyButton): //add conponents
add(lab

el
label _setPreferredSize(new Dimension(60, 10));

myButton.addActionListener (new ActlonLls(ener() €
publi

ic void actionPer formed(Actionévent e) {
count:

Tabel - setText("Count: * + count);

lic static void main(string[] args) {
try {

UlVianager . setL
} catch (Exception exc) {}
new IntroQ);

UlManager 1

GUI Statics

» Determine which components you want

* Choose a top-level container in which to put the
components (JFrame is often a good choice)

* Choose a layout manager to determine how
components are arranged

* Place the components

Components = What You See

* Visual part of an interface

* Represents something with position and size

e Can be painted on screen and can receive events
¢ Buttons, labels, lists, sliders, menus,

Component Examples

import javax.swing.*;
import java.awt.*;
public class ComponentExamples extends JFrame {

public ComponentExamples()
setlayout(new Flowdayourt(Flowayout LEFT));
)N

| p)
add(new JComboBox(new String[] { A", "B"
add(new JCheckBox("JCheckBox'));
add(new JSIider(0, 8
add(new JColorChooser())*

T 1);

setDefay™
pack(); T
setVisikt

3

public stat]
try {

UlMar, 2
} catch | i s a] mn 3
new Comp:




More Components

* JFileChooser: allows choosing a file
* JLabel: a simple text label

* JTextArea: editable text

* JTextField: editable text (one line)

e JScrolIBar: a scrollbar

» JPopupMenu: a pop-up menu

* JProgressBar: a progress bar

Containers

* A container is a component that
= Can hold other components
= Has a layout manager

* Heavyweight vs. lightweight
= A heavyweight component interacts directly with the host system
= JWindow, JFrame, and JDialog are heavyweight
= Except for these top-level containers, Swing components are mostly lightweight

« There are three basic top-level containers
= JWindow: top-level window with no border
= JFrame: top-level window with border and (optional) menu bar
= JDialog: used for dialog windows

* An important lightweight container
= JPanel: used mostly to organize objects within other containers

* Lots more!
13
A Component Tree
J Fr‘ame
JPanel
~_
JPanel J Pa‘nel
\ ; :
JPanel JPanel {2,000 en =]
JPanel JPal‘weI JPanel  JPanel
ComboBox (km) JComboBox (mi)
JTextField (3226) JTextField (2000)
JSlider JSlider

Layout Managers

* A layout manager controls placement and sizing of components in a container

= If you do not specify a layout manager, the container will use a default:
+ JPanel default = FlowLayout
+ JFrame default = BorderLayout

« Five common layout managers:
= BorderLayout, BoxLayout, FlowLayout, GridBagLayout, GridLayout

* General syntax: container.setLayout(new LayoutMan());

« Examples:
JPanel pl = new JPanel(new BorderLayout());

JPanel p2 = new JPanel();
p2.setLayout(new BorderLayout()):

Some Example Layout Managers

* FlowLayout
= Components placed from left to right in order added
= When a row is filled, a new row is started
= Lines can be centered, left-justified or right-justified (see FlowLayout constructor)

¢ GridLayout
= Components are placed in grid pattern (number of rows & columns specified in
constructor)
= Grid is filled left-to-right, then top-to-bottom

* BorderLayout
= Divides window into five areas: North, South, East, West, Center

* Adding components
= FlowLayout and GridLayout use container.add(component)
= BorderlLayout uses container.add(component, index) where index is one of

+ BorderLayout.North, BorderLayout.South, BorderLayout.East,

BorderLayout.West, BorderLayout.Center w

16
FlowLayout Example
import javax.swing.*;
import java.awt.*;
public class Staticsl {
public static void main(S st =/
new SlGUI(); Bnan 1 i 2 nan 3 i & i
} hnon & Btton F e B
class S1GUI {
private JFrame f;
public S1GUIQ) { —
f = new JFrame('Staticsl");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(500, 200);
f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)
f.add(new JButton(“'Button " + b));
f.setVisible(true);
3
3
18




BorderLayout Example

= = T 1 e Snathn 7
import javax.swing.*;
import java.awt.*;

public class Statics2 {
public static void main(string[] args) { new

class ColoredJPanel extends JPanel {
Color color;
col dJPanel(Color cotor) {
colol

T

public void paintComponent(Graphics g) {
-setColor(color);

g-fillRect(0, 0, 400, 400);

class S2Gul extends JFrane {
GU

("Staticsz")'
FxCloseOperation(JFrane EXIT_ON_Cif
00);

add(new ColcredJPanel(Color RED), BorderLayout.NORTH) ;
add(new ColoredJPanel(Color.GREEN), BorderlLayout.SOUTH);
add(new ColoredJPanel(Color BLUE), BorderLayout.WEST):

ToredJPanel (Color YELLOW), BorderLayout.EAST);
loredJPanel (Color.BLACK), BorderLayout.CENTER);
e(true);

More Layout Managers

* CardLayout

= Tabbed index card look from Windows

* GridBaglLayout
= Most versatile, but complicated

¢ Custom
= Can define your own layout manager
= But best to try Java's layout managers first...

Null
= No layout manager
= Programmer must specify absolute locations

= Provides great control, but can be dangerous because of platform
dependency

Code Examples

« Intro.java

* ComponentExamples.java
= Button & counter

= Sample components

* Basicl.java « Statics1.java
= Create a window = FlowLayout example
* Basic2.java « Statics2.java
= Create a window using a = BorderLayout example

constructor « Statics3.java

= GridLayout example
* LayoutDemo.java
= Multiple layouts

* Calculator.java
= Shows use of JOptionPane
to produce standard dialogs

GridLayout Example

inport javax. swlng
import java.awt.*

public class Statics3 {
public static void main(String[] args) { new S3GUIQ; }

class S36UI extends JFrame {
al

static fi M = 25;
static fi t SIZE = 12;
static final int GAP = 1;

public §:
set

Setbefauttc loseOperation(JFram

xIT ON CLOSE)

++) add(new r\)ﬂyPanel [OH

class MyPanel extends JPanel

MypanelQ) { setPreferredsize(nen Dinension(SIZE. SIZE): }
ublic void paintComponent(Graphics g) {
float gradient

((floatVath, abs(getx() S SO/ (10 (SI1ZE + AP * DIW):

g. lor(new Color(0f, Of
) & Rect(0, 0, getWidth(), getHelgh(())
¥
s
20
AWT and Swing
* AWT * Swing
= Initial GUI toolkit for Java = More recent (since Java 1.2)
= Provided a “Java” look and feel GUI toolkit
= Basic API: java.awt.* = Added functionality (new
components)
= Supports look and feel for
various platforms (Windows,
Motif, Mac)
= Basic API: javax.swing.*
« Did Swing replaced AWT?
= Not quite: both use the AWT
event model
22

GUI Dynamics




= Components

* Dynamics: user interactions
= Events

+ frames, panels, dialog boxes,

GUI Statics and GUI Dynamics

« Statics: what’s drawn on the screen

+ buttons, labels, lists, sliders, menus,

= Containers: components that contain other components

= Layout managers: control placement and sizing of components

+ button-press, mouse-click, key-press, ..

= Listeners: an object that responds to an event
= Helper classes

+ Graphics, Color, Font, FontMetrics, Dimension, ...

“hears” the event

*What objects do we need?
= Events

= Event listeners

import javax.swing.*:
import java.awt.

import java.awt.event.*;

Brief Example Revisited

public class Intro extends JFrame {
private int cou

private JButton myButton = new JButton("Push Me
private Jiabel label = new Jiabel("Count:
public_Intro(;

"+ count);
setbefaul tCloseOperation(JFrane .EXIT_ON_CLOSE):

add(myButton); //add components
add(label);

label .setPreferredSize(new Dimension(60, 10));

myButton.addActionListener(new ActionListener() {
ublic void actionPerformed(ActionEvent e) {
count++;
TabelsetText("Count:

i
b:

+ count);

pack():
setvisible(true);

public static void main(String[] args) {
Ulanager . s

setLayout(new FlowLayout(FlowLayout.LEFT)); //Set layout manager

etLo UlManager . ndFe N: {O)H
} catch (Exception exc) {}
new IntroQ);
¥
27
The Java Event Model
e Timeline

= User (or program) does something to a component
+ clicks on a button, resizes a window, ...

= Java issues an event object describing the event
= A special type of object (a listener) “hears” the event
+ The listener has a method that “handles” the event
+ The handler does whatever the programmer programmed
*What you need to understand

= Events: How components issue events

= Listeners: How to make an object that listens for events
= Handlers: How to write a method that responds to an event

Event
listener

Dynamics Overview
*Dynamics = causing and responding to actions
= What actions? events

+ Need to write code that knows what to do when an event occurs

= In Java, you specify what happens by providing an object that

+ In other languages, you specify what happens in response to an
event by providing a function

Event
listener

|

Brief Example Revisited

private JButton myButton = new JButton("Push Me

myButton.addActionListener(new ActionListener() {
ublic void actionPerformed(ActionEvent e) {
co 8

Tabel . setText("Count:

ks

s

+ count);

Events
* An Event is a Java object

= |t represents an action that has
occurred — mouse clicked,
button pushed, menu item

selected, key pressed, ...

* Most events are in
java.awt.event

= Some events are in

Javax.swing.event
= Events are normally created by

* All events are subclasses of
AWTEvent

the Java runtime system
+ You can create your own
events, but this is unusual

AWTEvent
ActionEvent

ComponentEvent
InputEvent




Types of Events

*Each Swing Component can generate one or more
types of events
= The type of event depends on the component
+ Clicking a JButton creates an ActionEvent
+ Clicking a JCheckbox creates an ItemEvent
= The different kinds of events include different information about
what has occurred
+ All events have method getSource() which returns the object
(e.g., the button or checkbox) on which the Event initially occurred
+ An I'temEvent has a method getStateChange() that returns an
integer indicating whether the item (e.g., the checkbox) was
selected or deselected

Event Listeners

eActionListener, MouseListener,
WindowListener, ...

e Listeners are Java interfaces
= Any class that implements that interface can be used as a listener

*To be a listener, a class must implement the interface
= Example: an ActionListener must contain a method
public void actionPerformed(ActionEvent e)

Implementing Listeners

* Which class should be a listener?

= Java has no restrictions on this, so any class that implements
the listener will work

* Typical choices

= Top-level container that contains whole GUI
public class GUl implements ActionListener
= Inner classes to create specific listeners for reuse
private class LabelMaker implements ActionListener

= Anonymous classes created on the spot
b.addActionListener(new ActionListener() {...});

Listeners and Listener Methods

* When you implement an interface, you must implement all the
interface’s methods

= Interface ActionListener has one method:
void actionPerformed(ActionEvent e)

= Interface Mouse InputListener has seven methods:
void mouseClicked(MouseEvent e)
void mouseEntered(MouseEvent e)
void mouseExited(MouseEvent e)
void mousePressed(MouseEvent e)
void mouseReleased(MouseEvent e)
void mouseDragged(MouseEvent e)
void mouseMoved(MouseEvent e)

Registering Listeners

* How does a component know which listener to use?

* You must register the listeners
= This connects listener objects with their source objects
= Syntax: component.addTypeListener(Listener)
= You can register as many listeners as you like

* Example:

b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
count++;
label .setText(generateLabel ());

}
D:

Example 1: The Frame is the Listener

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExamplel extends JFrame implements ActionListener {
private int count;
private JButton b = new JButton(“Push Me!");
private JLabel label = new JLabel("Count: ™ + count);
public static void main(String[] args) {
JFrame f = new ListenerExamplel();
f.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100) ;
f.setVisible(true);

3

public ListenerExample1() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label);
b.addActionListener(this);

3

public void actionPerformed(ActionEvent e) {
count++;
label .setText("Count: " + count);




Example 2: The Listener is an Inner Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample2 extends JFrame {
vate int count;
private JButton b = new JButton(“Push Ne!™);
private JlLabel label = new JLabel(“Count: " + count);
class Helper implements ActionListener {
public void actionPerformed(ActionEvent e) {
count++;
label _setText("Count: ™ + count);:

3

B

public static void main(String[] args) {
JFrame f = new ListenerExample2();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); F.setVisible(true);

3

public ListenerExample2() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label); b.addActionListener(new Helper());

Example 3: The Listener is an Anonymous Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExanple3 extends JFrame {
private int count;
private JButton b = new JButton("Push Mel");
private Jlabel label = new JLabel("Count: ™ + count):
public static void main (String[] args) {
JFrame f = new Listenerxanple3();
.setDefaul tCloseOperation(JFrane.EXIT_ON_CLOSE):
f.setSize(200,100); f.setVisible(true);

public ListenerExanple3() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label);
b.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label .setText("Count: ™ + count);

s

Adapters

* Some listeners (e.g., Mouse lnputListener) have
lots of methods; you don’t always need all of them
= For instance, you may be interested only in mouse clicks

* For this situation, Java provides adapters
= An adapter is a predefined class that implements all the
methods of the corresponding Listener
+ Example: Mouse InputAdapter is a class that implements all
the methods of interface Mouse InputListener
= The adapter methods do nothing
= To easily create your own listener, you extend the adapter
class, overriding just the methods that you actually need

Using Adapters

import javax.swing.*; import javax.swing.event.*;
import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame {
private int count; private JButton b = new JButton("Mouse Me!™);
private JLabel label = new JLabel('Count: " + count);
class Helper extends MouselnputAdapter {
public void mouseEntered(MouseEvent e) {
count++;
label .setText("Count: " + count);
B
3
public static void main(String[] args) {
JFrame f = new AdapterExample();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); f.setVisible(true);

b
public AdapterExample() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label); b.addVouseListener(new Helper()):

Notes on Events and Listeners

* A single component can have many listeners

* Multiple components can share the same listener
= Can use event.getSource() to identify the component
that generated the event

* For more information on designing listeners, see
http://java.sun.com/docs/books/tutorial/
uiswing/events/generalrules._html

* For more information on designing GUls, see
http://java.sun.com/docs/books/tutorial/
uiswing/

GUI Drawing and Painting

For a drawing area, extend JPanel and override the method
public void paintComponent(Graphics g)

paintComponent contains the code to completely draw
everything in your drawing panel

Do not call paintComponent directly — instead, request that the
system redraw the panel at the next convenient opportunity by
calling myPanel . repaint()

repaint() requests a call paintComponent() “soon”
= repaint(ms) requests a call within ms milliseconds
+ Avoids unnecessary repainting
+ 16ms is a good default value




Java Graphics

* The Graphics class has methods for colors, fonts, and various
shapes and lines
= setColor(Color c)
= drawOval(int x, int y, int width, int height)
= fillOval(int x, int y, int width, int height)
= drawLine(int x1, int yl, int x2, int y2)
= drawString(String str, int x, int y)
* Take a look at
= java.awt.Graphics (for basic graphics)
= java.awt.Graphics2D (for more sophisticated control)

= The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/index.html




