Introduction

to GUIs
(Graphical User
Interfaces)

Lecture 18
CS211 — Summer 2007

Interactive Programs

input
* “Classic” view of computer
programs: transform inputs to
outputs, stop
output

* Event-driven programs: @

interactive, long-running

; o input output
= Servers interact with clients events' events
= Applications interact with

user(s)

program

GUI Motivation

* Interacting with a program
= Program-Driven
+ Statements execute in sequential, predetermined order
+ Use keyboard or file I/O, but program determines when that happens
+ Usually single-threaded
= Event-Driven
+ Program waits for user input to activate certain statements
+ Typically uses a GUI (Graphical User Interface)
+ Often multi-threaded
* Design...Which to pick?
= Program called by another program?
= Program used at command line?
= Program interacts often with user?
= Program used in window environment?

* How does Java do GUIs? 3

Java Support for Building GUls

« Java Foundation Classes * Our main focus: Swing
= Classes for building GUIs = Building blocks of GUIs
= Major components + Windows & components
+ awt and swing + User interactions
+ Pluggable look-and-feel support = Built upon the AWT (Abstract
+ Accessibility API Window Toolkit)
+ Java 2D API + Java event model

+ Drag-and-drop Support
+ Internationalization

« Java’s support for class-platform GUIs is one of its main selling
points

Java Foundation Classes

* Pluggable Look-and-Feel Support
= Controls look-and-feel for particular windowing environment
= E.g., Java, Windows, Motif, Mac
* Accessibility API
= Supports assistive technologies such as screen readers and Braille
 Java 2D
= Drawing
= Includes rectangles, lines, circles, images, ...
* Drag-and-drop
= Support for drag and drop between Java application and a native
application
* Internationalization
= Support for other languages

GUI Statics and GUI Dynamics

« Statics: what's drawn on the screen
= Components
+ buttons, labels, lists, sliders, menus, ...
= Containers: components that contain other components
+ frames, panels, dialog boxes, ...
= Layout managers: control placement and sizing of components

» Dynamics: user interactions
= Events
+ button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event
= Helper classes
* Graphics, Color, Font, FontMetrics, Dimension, ...

Creating a Window

import javax.swing.*;

public class Basicl {

public static void main(String[] args) {
//create the window
JFrame f = new JFrame ("Basic Test!");
//quit Java after closing the window
f.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
£.setSize (200, 200); //set size in pixels
f.setVisible(true); //show the window

SBasicTestt -] 0Ed

Creating a Window Using a Constructor

import javax.swing.*;
public class Basic2 extends JFrame {

public static void main(String[] args) {
new Basic2();
}

public Basic2() {
setTitle ("Basic Test2!"); //set the title
//quit Java after closing the window
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setSize (200, 200); //set size in pixels
setVisible(true); //show the window

A More Extensive Example

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class Intro extends JFrame (
private int count = 0;
private JButton myButton = new JButton("Push Me!");
private Jlabel label = new JLabel("Count: " + count);

public Intro() {
Dot

(I XIT_ON_CLOSE)
LEFT)

)7

7); //set layout manager
add (myButton) ; //add components

add (label) ;

label.setPreferredSize (new Dimension (60, 10));
myButton. i

. tonLi D
public void actionPerformed (ActionEvent e)
counts+

«
1abel.setText ("Count: " + count) ;

)
n;

pack() ;.
setvisible (true) ;
}

public static void main(Stringl] args) (
try (

} catch (Exception exc) (}
new Intro()

}

}

GUI Statics

* Determine which components you want

* Choose a top-level container in which to put the
components (JFrame is often a good choice)

¢ Choose a layout manager to determine how
components are arranged

* Place the components

Components = What You See

* Visual part of an interface

* Represents something with position and size

* Can be painted on screen and can receive events
¢ Buttons, labels, lists, sliders, menus, ...

Component Examples

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame {

public ComponentExamples () {
tLayout (new FlowLayout (FlowLayout.LEFT));
add (new JButton ("Button")) ;
add (new JLabel ("Label"));
add (new JComboBox (new String[] { "A", "B", "C" }));
add (new JCheckBox ("JCheckBox")) ;
add (new JSlider(0, 100));
add (new JColorChooser () ;

- BEX]
pack () ; s 1o [
setVisik

}

public stat
k=

} catch | [Comm] e [a[v] D chedeos 3

More Components

* JFileChooser: allows choosing a file
* JLabel: a simple text label

* JTextArea: editable text

* JTextField: editable text (one line)

* JScrollBar: a scrollbar

¢ JPopupMenu: a pop-up menu

* JProgressBar: a progress bar

Containers

* A container is a component that
= Can hold other components
= Has a layout manager

* Heavyweight vs. lightweight
= A heavyweight component interacts directly with the host system
= JWindow, JFrame, and JDialog are heavyweight
= Except for these top-level containers, Swing components are mostly lightweight

« There are three basic top-level containers
= JWindow: top-level window with no border
= JFrame: top-level window with border and (optional) menu bar
= JDialog: used for dialog windows

« An important lightweight container
= Jranel: used mostly to organize objects within other containers

* Lots more!
13
A Component Tree
JFrame
\
J Pani Metric System
3228 [l -
JPanel JPanel 2z IKlInmeters ‘
JPanel JPanel
JPanel JPanel JPanel JPanel
JComboBox (mi)
[ComboBox (km)
JTextField (3226) JTextField (2000)
Jslider JSlider

Layout Managers

* A layout manager controls placement and sizing of components in a container
= If you do not specify a layout manager, the container will use a default:
+ Jpanel default = FlowLayout
+ JFrame default = BorderLayout

« Five common layout managers:
* BorderLayout, BoxLayout, FlowLayout, GridBagLayout, GridLayout

* General syntax: container.setLayout (new LayoutMan());

* Examples:
JPanel pl = new JPanel (new BorderLayout()) ;

Jpanel p2 = new JPanel();
p2.setlayout (new BorderLayout()) ;

Some Example Layout Managers

* FlowLayout
= Components placed from left to right in order added
= When a row is filled, a new row is started
= Lines can be centered, left-justified or right-justified (see FlowLayout constructor)

¢ GridLayout
= Components are placed in grid pattern (number of rows & columns specified in
constructor)
= Grid is filled left-to-right, then top-to-bottom

* BorderLayout
= Divides window into five areas: North, South, East, West, Center

« Adding components
= FlowLayout and GridLayout USe container.add (component)
= BorderLayout USES container.add (component, index) Where index is one of

+ BorderL t.North, BorderL t.South, BorderL t.East,
BorderL t.West, BorderL t.Center

17

FlowLayout Example

import javax.swing.*;
import java.awt.*;

public class Statiecsl {

public static void main (§&Staticst =
g o S16UL0) [Buton || sutanz || owton3 |[_swons || putons
} Butons || Buton7 || Butons

class SI1GUI {
private JFrame f;

public S1GUI() {
f = new JFrame ("Staticsl");
£.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
f.setSize (500, 200);
f.setLayout (new FlowLayout (FlowLayout.LEFT)) ;
for (int b = 1; b < 9; b++)

f.add (new JButton("Button " + b));

f.setVisible (true) ;

BorderLayout Example

import javax.swing.*;
import java.awt.*;

public class Statics2 {
public static void main(String[] args) { new

class ColoredJPanel extends JPanel {
Color color;
ColoredJPanel (Color color) {
this.color = color;

public void paintComponent (Graphics g) {
g.setColor (color) ;
g.fillRect(0, 0, 400, 400);
}
}

class S2GUI extends JFrame {
public S2GUI() {

setTitle("Statics2");
setDefaultCloseOperation (JFrame.EXIT_ON_CI
setSize (400, 400);
add (new ColoredJPanel(Color.RED) , BorderLayout.NORTH) ;
add (new ColoredJPanel (Color.GREEN) , Borderlayout.SOUTH) ;
add (new ColoredJPanel (Color.BLUE) , BorderLayout.WEST) ;
add (new ColoredJPanel (Color.YELLOW) , BorderLayout.EAST) ;
add (new ColoredJPanel (Color.BLACK) , BorderLayout.CENTER) ;
setVisible (true) ;

GridLayout Example

import javax.swing.*;
import java.awt.*;

public class Statics3 {
public static void main(String[] args) { new S3GUI(); }
}

class S3GUI extends JFrame {
static final int DIM = 25;
static final int SIZE
static final int GAP =

public S3GUI() {
setTitle("Statics3");
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
setLayout (new GridlLayout(DIM, DIM, GAP, GAP));
for (int i = 0; i < DIM * DIM; i++) add(new MyPanel());
pack() ;
setVisible (true) ;

¥

class MyPanel extends JPanel {
MyPanel() { setPreferredSize(new Dimension(SIZE, SIZE)); }
public void paintComponent(Graphics g) {
float gradient =
1f - ((float)Math.abs(getX() - get¥()))/(float) ((SIZE + GAP) * DIM) ;
g.setColor (new Color (0f, Of, gradient));
g.fillRect(0, 0, getWidth(), getHeight()):
}
}

More Layout Managers

* CardLayout
= Tabbed index card look from Windows

* GridBagLayout
= Most versatile, but complicated

¢ Custom
= Can define your own layout manager
= But best to try Java's layout managers first...

Null
= No layout manager
= Programmer must specify absolute locations
= Provides great control, but can be dangerous because of platform

AWT and Swing

* AWT * Swing
= |nitial GUI toolkit for Java = More recent (since Java 1.2)
= Provided a “Java” look and feel GUI toolkit

= Basic API: java.awt. * = Added functionality (new
components)

= Supports look and feel for
various platforms (Windows,
Motif, Mac)

= Basic API: javax.swing.*

» Did Swing replaced AWT?

= Not quite: both use the AWT
event model

dependency 21
Code Examples

* Intro.java * ComponentExamples.java

= Button & counter = Sample components
* Basic1.java « Statics1.java

= Create a window = FlowLayout example
* Basic2.java « Statics2.java

= Create a window using a = BorderLayout example

constructor

« Statics3.java

= GridLayout example
* LayoutDemo.java

= Multiple layouts

 Calculator.java

= Shows use of JoptionPane
to produce standard dialogs

GUI Dynamics

GUI Statics and GUI Dynamics

« Statics: what's drawn on the screen
= Components
+ buttons, labels, lists, sliders, menus, ...
= Containers: components that contain other components
+ frames, panels, dialog boxes, ...
= Layout managers: control placement and sizing of components

* Dynamics: user interactions
= Events
+ button-press, mouse-click, key-press, ...
= Listeners: an object that responds to an event
= Helper classes
* Graphics, Color, Font, FontMetrics, Dimension, ...

Dynamics Overview

*Dynamics = causing and responding to actions
= What actions? events
+ Need to write code that knows what to do when an event occurs
= In Java, you specify what happens by providing an object that
“hears” the event
+ In other languages, you specify what happens in response to an
event by providing a function

= Events '>
= Event listeners

Java VM

*What objects do we need? <4

Brief Example Revisited

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class Intro extends JFrame {

private int count = 0;
private JButton myButton = new JButton("Push Me!");
private Jlabel label = new JLabel("Count: " + count);

public Intro() {
Dot

(IF: XIT_ON_CLOSE) ;
IEFT)); //set layout manager

add (myButton) ; //add components
add(1abel) ;
label.setPreferredsize (new Dimension(60, 10));

Butt. tonLi tonLi D
public void actionPerformed (ActionEvent e)
countt;
Label.setText ("Count: " + count) ;
)
n:

i

ck () ;
setvisible (true) ;
}

public static void main(Stringl] args) (
try (

} catch (Exception exc) (}
new Intro();

Brief Example Revisited

private JButton myButton = new JButton("Push Me!");

Butt. tonLi tonLi D
public void actionPerformed (ActionEvent e)
countt;
Label.setText ("Count: " + count) ;
)
n:

i

The Java Event Model

e Timeline
= User (or program) does something to a component
+ clicks on a button, resizes a window, ...
= Java issues an event object describing the event
= A special type of object (a listener) “hears” the event
+ The listener has a method that “handles” the event
+ The handler does whatever the programmer programmed

*What you need to understand
= Events: How components issue events
= Listeners: How to make an object that listens for events
= Handlers: How to write a method that responds to an event

Events

* An Event is a Java object * Most events are in
= |t represents an action that has java.awt.event
occurred — mouse clicked, = Some events are in
button pushed, menu item javax.swing.event
selected, key pressed, ... « All events are subclasses of
= Events are normally created by AWTEvent
the Java runtime system

+ You can create your own
events, but this is unusual AWTEvent

ActionEvent
ComponentEvent
InputEvent

Types of Events

*Each Swing Component can generate one or more
types of events
= The type of event depends on the component
+Clicking a JButton creates an ActionEvent
+ Clicking a JCheckbox creates an ItemEvent
= The different kinds of events include different information about
what has occurred
+ All events have method getSource () which returns the object
(e.g., the button or checkbox) on which the Event initially occurred
+An ItemEvent has a method getStateChange () that returns an
integer indicating whether the item (e.g., the checkbox) was
selected or deselected

Event Listeners

*ActionlListener, MouseListener,
WindowListener, ...

eListeners are Java interfaces
= Any class that implements that interface can be used as a listener

*To be a listener, a class must implement the interface
= Example: an ActionListener must contain a method
public void actionPerformed (ActionEvent e)

Implementing Listeners

* Which class should be a listener?

= Java has no restrictions on this, so any class that implements
the listener will work

* Typical choices
= Top-level container that contains whole GUI
public class GUI implements ActionListener
= Inner classes to create specific listeners for reuse
private class LabelMaker implements ActionListener

= Anonymous classes created on the spot
b.addActionListener (new ActionListener() {...});

Listeners and Listener Methods

* When you implement an interface, you must implement all the
interface’s methods

= Interface ActionListener has one method:
void actionPerformed(ActionEvent e)

= Interface MouseInputListener has seven methods:
void mouseClicked(MouseEvent e)
void mouseEntered(MouseEvent e)
void mouseExited(MouseEvent e)
void mousePressed(MouseEvent e)
void mouseReleased (MouseEvent e)
void mouseDragged (MouseEvent e)
void mouseMoved (MouseEvent e)

Registering Listeners

* How does a component know which listener to use?

* You must register the listeners
= This connects listener objects with their source objects
= Syntax: component.addTypeListener (Listener)
= You can register as many listeners as you like

* Example:

b.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
count++;
label.setText (generateLabel()) ;

Example 1: The Frame is the Listener

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExamplel extends JFrame implements ActionListener {

private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);
public static void main(String[] args) {
JFrame £ = new ListenerExamplel();
£, 1tcl ion (JFrame.EXIT ON CLOSE) ;
£.setSize (200,100) ;
£.setVisible (true) ;

}
public ListenerExamplel() {
tLayout (new FlowLayout (F1 LEFT));
add(b) ; add(label) ;
b.addActionListener (this) ;

}

public void actionPerformed (ActionEvent e) {
count++;
label.setText("Count: " + count);

Example 2: The Listener is an Inner Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample2 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);
class Helper implements ActionListener {
public void actionPerformed (ActionEvent e) {
count++;
label.setText ("Count: " + count);
1
1
public static void main(String[] args) {
JFrame £ = new ListenerExample2();
£, 1tcl ion (JFrame.EXIT ON CLOSE) ;
£.setSize(200,100); £.setVisible(true);

}
public ListenerExample2() {
L t (new FlowLayout (F1 y -LEFT)) ;

add(b) ; add(label); b.addActionListener (new Helper());

Example 3: The Listener is an Anonymous Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample3 extends JFrame {
private int count;
private JButton b = new JButton("Push Me!");
private JLabel label = new JLabel("Count: " + count);
public static void main (String[] args) {
JFrame £ = new ListenerExample3();
£, 1tCl ion (JFrame.EXIT ON_CLOSE) ;
£.setSize(200,100); f.setVisible(true);

}
public ListenerExample3() {

tLayout (new FlowLayout (FlowLayout.LEFT));
add(b) ; add(label) ;
b.addActionList (new ActionListener() {

public void actionPerformed (ActionEvent e) {
count++;
label.setText("Count: " + count);

Adapters

» Some listeners (e.g., MouseInputListener) have
lots of methods; you don'’t always need all of them
= For instance, you may be interested only in mouse clicks

* For this situation, Java provides adapters

= An adapter is a predefined class that implements all the
methods of the corresponding Listener

+ Example: MouseInputAdapter is a class that implements all
the methods of interface MouseInputListener

= The adapter methods do nothing

= To easily create your own listener, you extend the adapter
class, overriding just the methods that you actually need

Using Adapters

import javax.swing.*; import javax.swing.event.*;
import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame {
private int count; private JButton b = new JButton("Mouse Me!");
private JLabel label = new JLabel("Count: " + count);
class Helper extends MouseInputAdapter {
public void mouseEntered (MouseEvent e) {
count++;
label.setText ("Count: " + count);
1
1
public static void main(String[] args) {
JFrame £ = new AdapterExample () ;
£, 1tcl ion (JFrame.EXIT_ON_CLOSE) ;
£.setSize(200,100); £.setVisible(true);
}
public AdapterExample() {
tL 't (new FlowLayout (F1 yout.LEFT)) ;
add(b) ; add(label); b.addMouseListener (new Helper());

Notes on Events and Listeners

* A single component can have many listeners

* Multiple components can share the same listener

= Can use event.getSource () to identify the component
that generated the event

 For more information on designing listeners, see
http://java.sun.com/docs/books/tutorial/
uiswing/events/generalrules.html

 For more information on designing GUIs, see
http://java.sun.com/docs/books/tutorial/
uiswing/

GUI Drawing and Painting

For a drawing area, extend JPanel and override the method
public void paintComponent (Graphics g)

paintComponent contains the code to completely draw
everything in your drawing panel

Do not call paintComponent directly — instead, request that the
system redraw the panel at the next convenient opportunity by
calling myPanel . repaint ()

repaint () requests a call paintComponent () “soon”
= repaint (ms) requests a call within ms milliseconds
+ Avoids unnecessary repainting
+ 16ms is a good default value

Java Graphics

* The Graphics class has methods for colors, fonts, and various
shapes and lines
= setColor (Color c)
® drawOval (int x, int y, int width, int height)
= £illOval (int x, int y, int width, int height)
® drawline (int x1, int yl, int x2, int y2)
® drawString(String str, int x, int y)
* Take a look at
= java.awt.Graphics (for basic graphics)
= java.awt.Graphics2D (for more sophisticated control)

= The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/index.html

43

