
1

Hashing

Hashing is a technique for maintaining a set of
elements in an array. You should also read Weiss,
chapter 20, which goes into more detail (but is harder
to read).

A set is just a collection of distinct (different)
elements on which the following operations can be
performed:

• Make the set empty
• Add an element to the set
• Remove an element from the set
• Get the size of the set (number of elements in it)
• Tell whether a value is in the set
• Tell whether the set is empty.

Obvious first implementation: Keep the elements in
an array b. The elements are in b[0..n-1], where
variable n contains the size of the array. No duplicates
are allowed.

Problems: Adding an item take time O(n) --it
shouldn’t be inserted if it is already in the set, so
b[0..n-1] has first to be searched for it. Removing an
item also takes time O(n) in the worst case. We would
like an implementation in which the expected time for
these operations is constant: O(1).

Solution: Use hashing. We illustrate hashing
assuming that the elements of the set are Strings.

Basic idea: Rather than keep the Strings in b[0..n-1],
we allow them to be anywhere in the b. We use an
array whose elements are of the following nested class
type:

// An instance is an entry in array b
private static class HashEntry {

public String element; // the element
public boolean isInSet; // = “element is in set”

// Constructor: an entry that is in the set iff b
public HashEntry(String e, boolean b) {

 element = e;
 isInSet= b;

}
}

Each element of our array b is either null or the name
of a HashEntry, and that entry indicates whether it is
in the set or not. So, to remove an element of the set,
just set its isInSet field to false.

Hashing with linear probing. Here’s the basic idea.
Suppose we want to insert the String “bc” into the set.
We compute an index k of the array, using what’s
called a hash function,

int k= hashCode(“bc”);

and try to store the element at position b[k]. If that
entry is already filled with some other element, we try
to store it in b[(k+1)%b.length] --note that we use
wraparound, just as in implementing a queue in an
array. If that position is filled, we keep trying
successive elements in the same way.

Each test of an array element to see whether it is null
or the String is called a probe.

The hash function just picks some index, depending
on its argument. We’ll show a hash function later.

Checking to see whether a String “xxx” is in the set is
similar; compute k= hashCode(“xxx”) and look in
successive elements of b[k..] until a null element is
reached or until “xxx” is found. If it is found, it is in
the set iff the position in which it is found has its
isInSet field true.

You might think that this is a weird way to implement
the set, that it couldn’t possibly work. But it does,
provided the set doesn’t fill up too much, and
provided we later make some adjustments.

Here’s a basic fact:

Suppose String s is in the set and hashCode(s) = k.
Let b[j] be the first null element after b[k] (we
include wraparound here). Then s is one of the
elements b[k], b[k+1], …, b[j-1] (with
wraparound).

Then, because of the basic fact, we can write method
add as follows, assuming that array b is never full:

 b
0 k b.length

try to insert element at b[k], b[k+1], etc

...

2

Hashing

// Add s to this set
public void add(String s) {

int k= hashCode(s);
while (b[k] != null && !b[k].element.equals(s))

{ k= (k+1)%b.length(); }

if (b[k] != null && b.isInSet)
return;

// s is not in the set; store it in b[k].
b[k]= new HashEntry(s, true);
size= size+1;

}

Removing an element is just as easy. Note that
removing a value from the set leaves it in the array.

// Remove s from this set (if it is in it)
public void remove(String s) {

int k= hashCode(s);
while (b[k] != null && !b[k].element.equals(s))

{ k= (k+1)%b.length(); }

if (b[k] == null || !b[k].isInSet)
 return;

// s is in the set; remove it.
b[k].isInSet= false;
size= size-1;

}

Hashing functions

We need a function that turns a String s into an int
that is in the range of array b. It doesn’t matter what
this function is as long as it distributes Strings to
integers in a fairly even manner. Here is the function
that Weiss uses, assuming that s has 4 characters.

 s[0]*373 + s[1]*372 + s[2]*371 + s[3]*370

i.e.
((s[0]*37 + s[1])*37 + s[2])*37 + s[3]

The result is then reduced modulo the size of array b
to produce an int in the range of b. Some of the
above calculations may overflow, but that’s okay.
The overflow produces an integer in the range of int
that satisfies our needs.

See Sec. 20.2 of Weiss for an example of this hash
function as a Java method.

What about the load factor?

The load factor, lf, is the value of

lf = (size of elements of b in use) / (size of array b)

The load factor is an estimate of how full the array is.
If lf is close to 0, the array is relatively empty, and
hashing will be quick. If lf is close to 1, then adding
and removing elements will tend to take time linear in
the size of b, which is bad. Here’s what someone
proved:

Under certain independence assumptions, the
average number of array elements examined in
adding an element is 1/(1-lf).

So, if the array is half full, we can expect an addition
to look at 1/(1-1/2) = 2 array elements. That’s pretty
good! If the set contains 1,000 elements and the array
size is over 2,000, only 2 probes are needed!

So, we will keep the array no more than half full.
Whenever insertion of an element will increase the
number of used elements to more than 1/2 the size of
the array, we will “rehash”. A new array will be
created and the elements that are in the set will be
copied over to it. Of course, this takes time, but it is
worth it. Here’s the method:

 /** Rehash array b */
 private void rehash() {
 HashEntry[] oldb= b; // copy of array b

 // Create a new, empty array
 b= new HashEntry[nextPrime(4*size())];
 size= 0;

 // Copy active elements from oldb to b
 for (int i= 0; i != oldb.length; i= i+1)
 if (oldb[i] !== null && oldb[i].isInSet)
 add(oldb[i].element);
 }

The size of the new array is the smallest prime
number that is at least 4*b.size(). The reason for
choosing a prime number is explained on the next
page.

3

Hashing

Quadratic probing.

Linear probing looks for a String in the following
entries, given that the String hashed to k (we
implicitly assume that wraparound is being used):

 b[k], b[k+1], b[k+2], b[k+3], …

This tends to produce clustering --long sequences of
nonnull elements. This is because two Strings that
hash to k and k+1 use almost the same probe
sequence.

A better idea is to probe the following entries:

b[k], (for obvious reasons,
b[k + 12] this is called
b[k + 22] “quadratic probing”)
b[k + 32]
...

This has been shown to remove the “primary
clustering” that happens with linear probing.
However, Strings that hash to the same value k still
use the same sequence of probes. There are ways to
eliminate this “secondary clustering”, but we won’t
go into them here. We just want to present the basic
ideas.

Quadratic probing has been shown to be feasible if
the size of array b is a prime and if the table is
always at least 1/2 empty. In this case, it has been
proven that:

•A new element can always be added, and
•its probe sequence never probes the same array

elements twice.

Calculating the next element to probe

The calculation of k+i2 is expensive. We show how
to make it more efficient.

Let Hi = k+i2, for i = 0, 1, 2, 3

For i>0, we calculate:

Hi - Hi-1
 = <definition of Hi and Hi-1 >

k+i*i - (k+(i-1)*(i-1))
= <arithmetic>

2*i - 1

Therefore, we can calculate Hi from Hi-1 using the
formula Hi = Hi-1 + 2*i - 1.

An implementation

The CS211 course website contains a file
HashSet.java --look under “recitations”. An instance
of class HashSet implements a set as a hash table,
using the material discussed in this handout. File
Main.java contains a method main that is used to test
HashSet (at least partially).

When you look at HashSet, think of the following:

• Class HashSet contains a nested class, HashEntry.
This class can be static because it does not refer to
any fields or methods of class HashSet. It is nested
because there is no need for the user to know anything
about it. One such good use of nested classes is
information hiding, as we do here.

• Class HashSet contains an inner class, HashSet-
Enumeration. It can’t be a nested class because it
DOES make use of fields of class HashSet. This is a
good use of inner classes for information hiding.

•Enumerating the elements of the set does NOT
produce them in ascending order.

•We do not use the String hash function described in
this handout. Instead, we make use of a function
hashCode that is supplied in many Java API classes.
Method hashCode is first defined in class Object, the
superest class of them all. Method hashCode in class
String actually computes the hash code using the
equivalent of:

 ((s[0]*31 + s[1])*31 + …)*31 + s[s.length()-1]

